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Answer ALL five questions in SECTION A (40 marks in total).
Answer TWO of the three questions in SECTION B (40 marks in total). If more than two

questions from Section B are attempted, then credit will be given for the two best answers.

The total number of marks for the paper is 80.

Electronic calculators may be used provided that they cannot store text/transmit or receive
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Al
Q) In the context of randomised controlled trials, what is meant by the term bias?
Solution

In the context of a clinical trial, bias is a factor that deviates the estimate of the treatment effect
systematically away from the true estimate.

[2 marks]
(i) Describe two possible sources of bias in clinical trials.
Solution
A brief description of any two of the following (i) selection (ii) allocation (iii) performance (iv)
follow-up (v) outcome assessment or (vi) analyses biases

[2 marks]
(iii)  Explain what is meant by the term double-blind.
Solution
This is method to reduce bias in a randomised controlled trial, where neither the study participant
nor the experimenters knows which of two treatments the participant is receiving

[2 marks]
(iv)  Describe two ways in which a trial being double blind might reduce bias?
Solution
Two reasons from: It is advantageous for a trial to be double blind as knowledge of treatment
allocation may influence (i) the behaviour of the patient, (ii) the treating health professional or (iii)
the assessor of outcome. (i) For example if the patient know which treatment they are receiving it
may motivate them to default from treatment or seek alternative treatments. (ii) If the treating health
professional know the allocation it may influence choice of secondary treatments. (iii) If the
outcome assessor is aware of treatment, allocation there judgement may be bias. For example it may

affect a patient’s self-assessment if they know that they have received a placebo or standard

treatment.
[2 marks]
[Book work]
[Total 8 marks]
A2.

A randomised controlled trial is being planned to compare a new treatment (T) and a control

treatment (C). Suppose the primary outcome measure is continuous and normally distributed. The
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power to demonstrate a treatment effect = with a two-sided two sample t-test is given by the

rJn

o2

expression 1_q{za/2 - ] where o is the known within treatment group standard deviation, n

is the sample size of each of two equal size groups, a is the significance level, and @ is the

cumulative density function of a standardised normal distribution.

Suppose one wishes to detect a treatment effect of 5 units and the within treatment group standard
deviation has been estimated to be 20 units, estimate the power of a trial with 160 subjects in each

treatment group.
Solution

=5 0=20 n=160

Tﬁ]:l—q{l% —5*/16_0}14{ V80

1-®d|z , - 1.96——— |=1-D(-0.276) =D (0.276) = 0.6088
( /2 O'\/E 20\/5 4 J ( ) ( )

because @ (-0.276)=1-®(0.276).

The power of the study is 60.1% [3 minutes calculation]

[Total 6 marks]

A3.

() Illustrate how you might prepare a randomisation list for the first twenty patients in a trial
with two treatments using Block randomisation with a block size of 4.

Solution

With two treatments, say A and B, one could choose a block size of 4. With this block size there are
6 possible blocks (1) AABB (2) ABAB (3) ABBA (4) BBAA (5) BABA (6) BAAB

To assemble a randomisation list for twenty subjects one would select 5 random numbers between
1- 6 with replacement in sequence, say the numbers 2, 6, 3, 1, 3 from which one could assemble the

following list for the first 20 allocations
ABAB|BAAB|ABBA|AABB|ABBA [4 marks]

(i) How might you use block randomisation to improve balance between two randomly
allocated treatment groups for a dichotomous prognostic factor?
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Solution
Block randomisation can be used in conjunction with stratification to obtain balance in a categorical
prognostic factor. Separate block randomisation lists are used for each prognostic stratum.
[2 marks]
[Bookwork]
[Total 6 marks]
A4,
(M Explain what is meant by an equivalence trial.
Solution
Usually the aim of a trial is to detect a difference between the treatments under study, testing
whether a new treatment is superior to the existing standard treatment or a placebo. Such trials are
called Superiority Trials. In such a trial the null hypothesis is that the average outcome is the same.
Equivalence trial are designed to establish that the efficacy of two or more treatments is the same.
Therefore in such a trial the null hypothesis is that the average outcome is different.
[3 marks]

(i) Outline the statistical analysis one could use in a parallel group trial to establish whether a
new treatment T is equivalent to a control treatment C for a continuous normally distributed
outcome measure Y.

Solution

Rather than using a formal significance test, statistical analysis of equivalence trials is usually based

on the confidence interval of difference between treatments. Equivalence is established by

demonstrating that the confidence interval of the difference lies in the specified range (-dg, + dg).

Suppose outcome measure Y is continuous and normally distributed with means pc and pr for the

control and new treatment respectively. Rejection of the null hypothesis that Ho: |ur-uc[> 6g against

the alternative hypothesis Hi: |ur-pc|< g where the (1-2a) confidence interval is within the

interval (-0g, + dg), will have a type I error of less than a.

[4 marks]

(iii) A randomised controlled equivalence trial is carried out to test whether a new generic drug
is as effective as a current standard drug for controlling pain. At follow-up this is measured
by a 100 mm analogue scale with higher scores representing greater pain. Forty-two

patients are randomised to the standard treatment and forty-one to the new generic
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treatment. The statistical computer package output is given below. A difference of 5 mm
was considered by researchers to be the minimum that was clinically important. Using the
results in the output test whether the new generic drug is equivalent to the current standard

drug specifying the significance level of the test.

Two-sample t test with equal variances

| Obs Mean Std. Err. Std. Dev. [90% Conf. Interval]
_________ e e e e e e e e
Standard | 42 35.2 2.79289 18.1 30.49991 39.90009
Generic | 41 34.1 2.79551 17.9 29.39278 38.80722
_________ e e
diff | 1.1 3.952132 -5.475889 7.675889
diff = mean(Standard) - mean(Generic) t = 0.2783
Ho: diff = 0 degrees of freedom = 81
Ha: diff < O Ha: diff 1= 0 Ha: diff > 0
Pr(T < t) = 0.6093 Pr(IT] > |t]) = 0.7815 Pr(T > t) = 0.3907
Solution

The output gives a 90% confidence interval. This can be used to carry out a 5% level test of
equivalence. The question states that a 5mm difference on the visual analogue scale was considered
to be the minimum clinically important difference. Therefore + 5 mm is used as the limits of
equivalence. From the printout the 90% confidence interval is (-5.48 to + 7.68) which overlaps both

limits of equivalence. Therefore it is not possible to reject the null hypothesis in a 5% level test.
[Reading time 1 minute]
[3 minutes calculation time]
[3 marks]

[Total 10marks]
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AS.

In meta-analysis suppose é, is an estimate of the treatment effect for the i" study and let Var [é}

be its sampling variance.

k ~
Z W; Hi
() For the weighted estimate of the overall effect, defined by 6 = ik where w; are

W

Zk: w,? .Var[éi ]

weights, show that Var[é ]: 'k—z
(=)

Solution

. i K.
Var[@]:Var ' =— ZVa{ZWi.Hi]

k . k .
Since the studies are independent, it follows that Var{Zwi.Hi } =Y wvar[ 4 ].

iwiz.Var[éi]

HenceVar[é ] S E—— [Book work]

(34]

The table below summarizes the outcome of three randomised trials of a new antipsychotic drug

[3 marks]

compared to a standard antipsychotic drug for people with schizophrenia. The treatment effect for

each study (6, , i =1,2,3) is the difference in mean symptom scores for the two treatments, with

lower values representing a benefit of treatment. @ar[é ] is the sample variance estimate of the i

study.
Study Mean difference in symptoms*, 6, %r[Ai ]
Holmes (2000) 2.4 0.5
Bourne (2002) -2.8 2.5
Bond (2006) 3.0 2.0

* new drug — standard drug.
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(i) The minimum variance estimator, 4, , is obtained when w, ocl/Var[éi] For the data in the

table above, compute the minimum variance estimate of the overall treatment effect.

Solution
- . "~ -
Mean d|fferenc§ in symptoms*, i W =J/@ar[9i}
Study 6, %r[ ] ]
Holmes (2000) 2.4 0.5 2.0
Bourne (2002) -2.8 2.5 0.4
Bond (2006) 3.0 2.0 0.5
kK, .
. Zwigi (2.0x2.4)+(0.4x~2.8) + (0.5x3.0) 5.18
Oy =———= =22-1.786
2.0+0.4+05 2.9
W,
[Calculation time 5 mins]
[4 marks]
(iii)  Hlustrate the three studies and the overall treatment effect using a sketch of a forest plot.
Solution

The forest plot should look as follows:

e
—
-
)
N
+ _ n
© U
\ 9
=
w
L
o

Holmes (2000)
Bourne (2002)
Bond (2006)
Overall effect

[Time 3 minutes]
[Total 10 marks]
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B1.

For a parallel group randomised controlled trial comparing a control treatment (C) with a new
treatment (T) suppose Y is a continuous normally distributed outcome variable and X is the value of

the same variable recorded prior to randomisation. Suppose that 7 is the treatment effect such that:
Y =u,+¢, and X=u+e for treatment C
Y=p,+r+¢,and  X=p +e for  treatment T

with E[gX]=E[gy]=O, Var[gy}=0§ ,Var[gx]=af, and Cov[sx,gy]=a

Xy

Define D =Y — X and suppose that X, X., ¥;, V., d. and d. are the sample means of X , Y and

D for each treatment respectively. Define 7(8) =(y; —6% )—(V. —6%.).

(i)  Showthat E[7(6)]|=7.

Solution

Define 7(0)=(V; —0% )— (V. — 0% ).

Now E[7(0)]=E[¥ -V.]-0E[% %]

Since E[Y; —V.]=7+BE[X —X.], it follows that

E[f(H)]:r+(ﬂ_9)E[YT ~%]

Randomisation means that E[X; |=E[X].

Therefore E[7(0)]=7.
[4 marks]
(i)  Show that Var[7()]=4* (o7 + 60} - 200, ) where 1 = %+% , N, is the numbers of
patients allocated to the new treatment and n; is the number allocated to the control

treatment.
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Solution
Consider 7(0)=(¥; —6% )—(Vc —0%:)
var[#(0) ]=Var[(¥; - ¥c)-0(% -%)]
=Var[¥, - ¥, ]+Var[ 6((% - %)) |-2Cov[ ¥; - V.. 0(% — %) ]
Var[y; - V. |+ 6*Var[X, - X.]-2.0.Cov[Y¥; - V.. % - %] [1]
Considering the first term
Var[y; — V. |=Var[y; |+Var[y.]-2Cov[¥;, V]
Since treatment groups are independent Cov[Y;,Y, |=0.

Therefore Var[y; —y.|=Var[y; ]+Var[Y.].

D Var(y,] ZJYZ_ ,

Since observations are independent Var [y, | =< = et

2
n’ n?

2
Similarly Var[VC]za—Y.
n

C

Therefore Var [y, — V.| = A’oy where 1= {niJrni _
T C

Similarly Var[X, - X |=A’cy andCov[Y; -V, % —X.|=A%0y, .
Substitution into [1] gives Var[7(8)]=4*(o} +0°0% 200y, )

[7 marks]

(iii))  Show that Var[f(@)] has a minimum when &=, where s the regression coefficient of Y

on X.
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Solution

Differentiation with respect to 6 gives
iVar[f(e)] =* (260} -20,,).
89 X Xy

This equals zero when 0 = 6y,/cy’.

2

The second derivative 0 5
00

Var|[7(6)|=24%c7.

As this is positive, it follows that Var[%(@)] has a minimum when 0 = 6,,/c,’.

[4 marks]
(iv)  Three statistical analyses might be used to estimate and test the treatment effect:
a) an unadjusted analysis using just the outcome variable Y
b) an analysis based on the change score Y-X or
c) alinear model of the outcome variable Y with treatment group and X as covariates.
What are the implications of the results in (i) and (iii) for the choice between the three

analyses in terms of bias and precision of the treatment effect?

Solution
Values of 0 equal to 0, 1 and B correspond to the treatment effect in an unadjusted, change and
linear adjusted model analyses. All three estimates are unbiased, but an estimate of the treatment
effect based on a linear model smaller variance compared to an unadjusted analysis or a change
analysis. Reducing the variance of the treatment effect estimate increases the power of the analysis.
As a consequence if a baseline variable is thought to be correlated with outcome, an analysis
adjusting for baseline is recommended, and where the baseline value of the outcome is recorded a
linear model analysis is superior to an analysis based on change.

[3 marks]

(v) Why is it important for randomised controlled trials to have a statistical analysis plan?
Solution

A statistical analysis should be prepared prior to beginning the analysis. There can be many
different ways in which the outcome from a randomised controlled trial can be analysed. For
example 3 possible analysis were considered in (iv). These analyses may give results that are more

or less supportive of the investigators’ opinion. Unless the analysis is pre-specified the investigators
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may present that which is closest to their opinion, instead of the best analysis.
[2 marks]

[Book work]

[Total 20 marks]

B2.
For an AB/BA crossover trial a standard model for a continuous outcome y; for the i™ patient in the
j™ period is:

Yo =H+T+E +8 for a patient in sequence AB in period 1

Yo =H+P+E& +e, for a patient in sequence AB in period 2

Ya=u+&+&, for a patient in sequence BA in period 1

Yo =H+T+P+E +6&, for a patient in sequence BA in period 2

where 4 isthe mean for the sequence BA in period 1, ¢ is the treatment effect of A compared to

B, and ¢ is the period effect, with & and ¢; being two independent random variables with
&~N[0,6f] and & ~N[0,07|. Definingd, =y, -y, let d,s, gy, 135, 125, be the sample and
population means of d, for sequences AB and BA respectively.
(i) Show that a test of the null hypothesis H, : 5, = 15, is the same as a test of no treatment
effect, H,:7=0
Solution
Hag = E[in - yil] = E[(ﬂ+¢+5i2)_(ﬂ+7+5i1):| = ¢—7since E[giz] = E[gil] =0
Similarly
:USA = E[in - yil]: E[(ﬂ+¢+7+5i2)_(ﬂ+gi1):|:¢+T
Hence uf, — uis =27
Hy : uhs = 1S, iff Hyiz=0.
[Book work]
[3 marks]
(i) Two anti-cholesterol lowering drugs were compared in a randomised controlled crossover
trial. Ten patients were randomly allocated to sequence drug A then drug B and eight
patients were randomly allocated to sequence drug B then drug A. The table below
summarizes the sample mean and standard deviation for each sequence and period interval

of the treatment effect. Test the hypothesis H,:z=0 vs. H, :z =0 using a 5%

significance level, and compute the 95% confidence interval.
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Period 2 — Period
Period 1 Period 2 1

Sequence| Mean s.d. mean s.d. Mean s.d N

AB 6.42 0.81 6.01 0.72 -0.41 0.52 10

BA 6.23 0.63 6.11 0.71 -0.12 0.43 8

Solution

The hypothesis Hp:=0 vs. Hy:1#0 can be tested using a two-sample t-test of the means of the
differences H, : ui, = w5, . The test statistic T is defined as

d -d N N, —1)s? +(n., —1)s?
T, = Ad% dA_B WhereSE[dBA—dAB]:sd /i+i and s, :\/( o ~ 155, * (Mn —1)s5, .
SE|dBA —d g I Nag Nga Npg +Nga —2

2 2
Substitution gives s, :\/9X0'52 1+67X0'43 =0.483 Hence
SE[ dpy—d, |=0.483 /i+1 =0.229
10 8
-41-(-0.12) o o
Hence T, =229 —1.266 Under the null hypothesis this will have a t distribution with 16

d.f.
From tables p>0.05. Hence the null hypothesis is not rejected.

A (1-a)-size confidence interval for the treatment effect t is defined by

%(CTBA - d_AB )i %ta/Z (“1+”2‘2)§E [d_BA - CTAB ] :

From tables L, (n1+n2—2) = 1505 (16) = 212

Therefore the 95% confidence interval

%(JBA ~d AB)i%ta/z(nlmz_z)éE[J o — 05 |which is %(—0.29)1%2.12><.229 giving
[-0.388, 0.098] or [-0.39, 0.10]
Based on the hypothesis test there is no evidence that there is any difference between the two
treatment. The 95% confidence interval is [-0.388 , 0.098]
[5 minutes calculation time]
[7 marks]
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(iii) Define ci = yi1 — yi for sequence AB and c; = yi, — yi1 for sequence BA. Let w5, 5, Cas
and C,, be the population and sample means of these for sequences AB and BA
respectively. Show that a test of the null hypothesis H, : u,; = 1, 1S the same as a test of

the period effect, H,: ¢ =0.

Solution

Hie = E[Ya—Vio]= E[(ﬂ+7+giz)_(ﬂ+¢+gi1)]:T_¢
,uéA = E[yiz _yil]: EI:(/J+¢+T+8i2)—(lu+gil):|:¢+T
Therefore ug, — 5 =—24.

Hence the test H,: w4, = 15, 1S equivalent to a test of the period effect H,: ¢ =0.
[Book work]

[3 marks]
(iv) From the data in the table above, test the null hypothesis H,:¢=0 vs. H, :¢#0using a

5% significance level.
Solution

The hypothesis Hy: $=0 vs. H;: ¢=0 can be tested using a two-sample t-test of the means of the
differences H, : 155 = 15, - An appropriate test statistic Tc is defined as

c _E - 1 Ny —1)s2 +(n,, —1)s2
T. :% where SE [Cyy —Chg | =S¢, [—+ and s; :\/( e ~1)Sc,, +(Mes ~1)5c,,
SE [CBA _CAB] N Nga Npg +Ngp — 2
Where s is the pooled standard deviation and s ,s. are the standard deviations for each

sequence.

(@]

NOW 445 = —13s =0.41 a0d 15, = 425, =-0.12

~ —

Sc,, =Sb,, =Sc,. = So,, - Therefore SE[C,, —C,s | =SE|[ dy, —d,y |=0.229

Therefore T, = 041+0.12 2.31

0.229

From tables t,, (n+n,-2) -ty (16) - 212 Therefore one can reject the null hypothesis that Ho: ¢=0
[3 minutes calculation time]

[5 marks]
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(v) Briefly comment on the result of the trial
Solution
From the test of the hypothesis Hy:t = O there is no evidence of a treatment effect. In contrast there
is evidence of a period effect. From inspection of the data in the table one can see that cholesterol
levels reduce for both sequences.

[2 marks]

[Total marks 20]
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B3.
Consider a randomised controlled trial. Suppose the patient population can be divided into three
sub-groups as follows:

Compliers: patients who will comply with the allocated treatment,
Always control treatment:  patients who will receive control treatment regardless of
allocation
Always new treatment: patients who will receive the new treatment regardless of
allocation.
This division assumes that there are no defiers, that is patients who will always receive the opposite
of the treatment to which they are randomised. Assume that the proportion and characteristics of
Compliers, Always control treatment, Always new treatment is the same in both arms and that

randomization can only affect the outcome through the receipt of treatment.

() Show that an Intention-To-Treat estimate of the treatment effect is biased towards the null
hypothesis of no treatment effect.
Solution

Table of expected means under assumptions of model

Type Control New Treatment Proportion
Group Group In
Latent Class
As Randomized A i u+ 7 0a =1-0g -6¢c
Always Control B [THI [THI 05
Always New Treatment C pw+lc+ 7 p+lc+ Oc

71s the causal effect of treatment

For Intention-to-Treat Estimate

Tyt :I:eA(IU"'T)"‘HB (/U+7B)+ec (,U"'?’c +T):|_|:0AJU+HB (:U+7/B)+9c (:u+7c +T):|
=0,r
as second and third terms in each bracket cancel.

Hence|7 ;| < 7 which means 7, is biased towards zero if 64 <1 i.e. if some patients do not

comply with treatment. [Book work]
[4 marks]
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(i) Show that an As-Treated estimate of the treatment effect may be biased either towards or

away from the null hypothesis of no treatment effect.

Solution
For the As-Treated Estimate

Tat

_ QA(,u—i-T)—i-ZHC(y—i-yc—i-r) _ HA,u+29B(y+}/B)
6, +26, 6, +26,

0, + 26, 0, +26,
0, +20, | 0, +26,

I 207 }__ 20575 }
e | | 1-605— 6. +26,

—rt Oc e |G
| 1-6; + 6, 1-6. +6;

The values of y. and y, can be positive or negative so that the second and third terms can be either
positive or negative. Hence the bias can be away from or towards the null hypothesis.

_{(9A+29C),u+20cyc +(9A+29C)r}{(@\ +20, )+ 29%}

=7+

[Book work]
[5 marks]

The table below summarizes the outcome of patients from randomised controlled trial comparing
two treatments according to randomized group and treatment received. Some patients allocated to
the New treatment received the Control treatment and some patients allocated to Control treatment

received the New treatment.

Randomised Group
New Treatment Control
Recovered Received Received Received Received
after 12 weeks New Control New Control
Yes 360 72 48 360
No 120 48 12 180
Total 480 120 60 540
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(ili)  For the outcome measure Recovered after 12 weeks, calculate the point estimate of the
difference in proportions of the New treatment compared to the Control treatment assuming
(@) an Intention-To-Treat analysis, (b) an As-Treated analysis.
Solution
(@) Intention-To-Treat = 432/600 — 408/600=0.72- 0.68 = 0.04

(b) As-treated = 408/540-432/660 = 0.75555 - 0.654545= 0.1010101
[2 minutes calculation time] [3 marks]

(iv)  Explain why an Intention-To-Treat estimate is preferable to an As-Treated estimate in a
superiority trial.

Solution

As we have seen in (i) an intention-to-treat analyses will bias an estimate of the treatment effect

towards the estimate of no effect. This means that any effect will be biased towards the null

hypothesis of a superiority trial. Hence if we reject the null hypothesis using an intention-to-treat

analysis, we can be more confident that the true treatment effect is at least as large as that observed.

In contrast a per-protocol analyses may bias the estimate of the treatment effect either away or

towards the null hypothesis of no effect as seen in (ii). [3 marks]

(v) Calculate the point estimate of the Complier Average Causal Effect of New treatment
compared to Control.
Solution

From above 7., = 6,7 where 6 is the proportion of subjects that accept randomized treatment and

T is the causal effect of treatment or the Complier Average Causal Effect . Ox =1-65 -6 where 65 is

the proportion of patients that will always receive the control and & the proportion who will always

receive the new active treatment.

¢ can be estimated from the new treatment arm and & from the control arm.

6 = 120/600. 6: =60/600. Hence € =1 - (60/600) — (120/600) = 0.7

Hence the Complier Average Causal Effect of New treatment compared to Control treatment,

7=0.04/0.7=0.057 [3 minutes calculation time]

[5 marks]

[Total 20 marks]

END OF EXAMINATION PAPER
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Math31042 Fractal Geometry: Summer 2017 Exam Solutions

March 10, 2017

Al) a) A S-cover of E is a collection {Uj}je of sets U; C X satisfying that E' C J;; U; and that each
Uj has |U;] < 6.
HI(E) = inf{z |U;|° : {U,} e is a d-cover of E'}.

JjeJ

[3 marks, bookwork]

b)
H(E) := lim H3(E).

For any ¢’ < ¢ we have that any ¢’-cover of E is also a d-cover of E. Thus
Hs (E) = H5(E).
Since H;(E) is monotone in 6 we conclude that the limit as § — 0 exists. [4 marks, bookwork]
c) For 0 < s <t, given a d-cover {U,},es of E we see that
Tyt > 5o,

Hence

Sl = DUt

JjeJ jeJ

5 Ul

JjeJ

%

Taking the infimum over all §-covers gives that
H3(E) > 6 "HE(E).

Letting § — 0 gives that if s < ¢ and H'(E) > 0 then H*(E) = oo.
Conversely, if s < t and H*(E) < oo then H'(E) = 0.

Thus we can define

dimg (E) = inf{s : H*(E) = 0} = sup{t : H'(E) = oc}.



[bookwork, 6 marks|

A2) If A C B then any d-cover of B is a d-cover of A. Thus Hj;(A) < Hj(B).

Taking limits as 6 — 0 gives H*(A4) < H*(B).

[Alternatively, this last line could be concluded directly from the properties of outer measure, using the
fact (proved in the course) that 7° is an outer measure].

Thus H*(B) =0 = H*(A) =0, and so

inf{s: H*(A) =0} < inf{s: H*(B) = 0}
giving

[4 marks, bookwork]
A3 a) An outer measure is a mass-distribution if it has bounded support and if
0 < u(X) < 0.

[Alternative statement for last part, 0 < u(supp(u)) < 00.]

[3 marks, bookwork]

b) Let pu be a mass distribution on E, and suppose that for some s there are numbers ¢ > 0 and € > 0
such that
p(u) < U

for all sets U C E with |U| < e. Then
p(E)
c

H(E) >

and hence s < dimgy (E).

[4 marks, bookwork]

c) Consider two dimensional Lebesgue measure Ay on [0,1]2. If |[U| < § then

() < (2 Ty
2 ST 9 —4 .

Thus 2 < dim ([0, 1]?) by the mass distribution principle.

[6 marks, example sheet]
A4) f:(X,d) — (X',d’) is Lipschitz if there exists a constant K > 0 such that

d'(f(z), f(y)) < Kd(z,y)

for all z,y € X.



If f:(X,d) = (X',d) is Lipschitz then for any set U C X with |U| < § we have |f(U)| < K¢.
Furthermore, if {U;};cs is a d-cover of E then {f(U;)};es is a Kd-cover of f(E). Thus if H}(E) < C

then there exists a § cover {U;};e; of E with

Y vl <c

JjeJ

and hence

Hics(F(B)) <D (K|U,|)* < K°C.

jeJ
Hence Hi.5(f(E)) < K*H*(E). Taking limits as § — 0 gives

H(f(E)) < K°H*(E)

and hence
dimy (f(E)) < dimp (E).

[6 marks, bookwork]

A5) Let 7 : R? — R be given by

7Tl(xvy) =T

Then
d((x1,01), (22, 92)) = V(w2 —21)2 + (g2 — 11)?
> (X2 — 1)
= |z2 — x|

d(mi(z1,y1), T (22, Y2)-

Thus 71 is Lipschitz (with Lipschitz constant 1).
Now given g : [0,1] — R we see that

m{(z,g(x)):0<x <1} =]0,1].
Thus, since m; is Lipschitz,
dimg{(z,g(z)) : # € [0,1]} = dimp (mi{(z, g(z)) : = € [0,1]}) = dim, ([0, 1]) = 1.

[unseen, although we have used the fact that 7y is Lipschitz in example sheets, 5 marks|



B6) a) Let § > 0 and choose k € N such that
107F <5 <1070,

Then
U :={¢pa, 0+ 0¢q,([0,1]) : each a; € {1,3,5}}

is a d-cover of E. Thus
Ns(E) < U] = 3*.

Hence
ogWG(E) _ log(3")
—logd —  —log(10—(k=1))
B klog3
~ (k—1)log10
log 3
log 10
log 3

as k — 00,6 — 0. Thus %B(E)leqlog 10°

[similar to example sheet, 5 marks]
b) Put a mass distribution u on E by letting

(W ba, 00 ¢q, ([0,1]) = 37F

and extending this to an outer measure on all sets A by letting

plA) = 0E (Y (60, 0+ duy, (0.1) : A€ | 6, 0+ 0 duy, (0.1}

j=1
Now suppose that |U| < §. Choose k € N such that
107F <5 <1070,
Then U intersects at most one basic interval ¢4, o -+ ¢q,_, ([0,1]) of depth (k — 1), and so
w(U) < 3D < (10[U)weo.

Hence by the mass distribution principle,

Then loz 3 loz3
og . . —— og
Tog 10 < dimgy(FE) < dimg(F) < dimp(F) <




hence dimp(F) exists and equals lfgglgo. [7 marks, similar to example sheet (only the self similar set changed)]

c) FE is the set of points in [0, 1] with only digits 1,3 and 5 in their decimal expansions, i.e.

E ={0.xqxox3---: eachx; € {1,3,5}}
[2 marks, similar to example sheet]

d) If Ac ;- Ax and each Ay has

then for any s > d, for all kinN, H*(Ay) = 0.

Thus, since H? is an outer measure,

1A < 1A

AN
T
-
N
K
I
(@)

Then dimg(A) < s.
Since s > d was arbitrary, we conclude dimgy(A) < d.

[6 marks, bookwork]
e) The map mg,...q, : R = R given by

Tay-ap (0.212223 -+ ) = (0.a1 - - - a1 2223 - -+ )

is Lipschitz and maps E onto

Agyoap = {001 -agzixe -+ s x; € {1,3,5}}.

Thus dimpy (Ae,...q),) < dimpg(F).

Now we can write

A= U U Agy oy
k=1

ar,,ar€{0,1,+ 9}k

This is a countable union, and so by part d),

1
dimg (A) < max{dimp (Ag,..a,)} = dimp (E) = 1005130

[6 marks, unseen]



B7 a) S(X) is the space of non-empty compact subsets of X.
Define

dg(A,B) = inf{é:Va € A € B withd(a,b) < §,Vb € B3a € A with d(a,b) < 4}

If & = {¢1--- ¢y is an iterated fuction system where each ¢; is a contraction then there exists a unique

non-empty compact set E satisfying

E =] ¢i(E)
i=1
[6 marks, bookwork]
b) dimg, (P) is the unique value of s satisfying
sumb_ cd = 1.

[2 marks, bookwork]

c) LetY C X satisfy that ¢;(Y) C Y for each i € {1,---k}.
Let ¢ = max{¢;} < 1.
Given ¢ > 0 let n € N be such that ¢"|Y| < 0.
Then {¢a, 0+ ¢Pa, ([0,1]) : a; € {1,--- ,k}} is a d-cover of E.
Then

H3(E)

IN

Z |¢a1 O"'¢an(Y)|S

a1, ,an€{l, - k}m}

= E Cal "'Can‘Y|
ay,cdots,an€{1, - k}™

= (4P

But if s = dimg;m (YY) then ¢f +--- ¢}, = 1.
So Hi(E) < |Y]°. Letting § — 0 gives H*(E) < |Y'|° and hence

dlmH(E) < dimsim(®)~
[bookwork, 8 marks]

d) ® = (phiy,---,¢x) satisfies the open set condition if there exists a non-empty, bounded open subset
V of (R™,d) with

k
VDU@W)

and with
B:(V)N0,(V) = 0



for i # j.
[bookwork, 3 marks]

e) Let ¢ ¢ be the contraction ratios of phiy,--- , @y respectively. Then the contraction ratio of the
map ¢; © ¢; = ¢;c;.

Then the similarity dimension ss of ®5 is the solution to

k
1= Z Z(CiCj)SZ

j=11i=1 j=11i=1

Il Il
— MR‘
- -
Ea
B og
v =
M
—
M- 2
S~—
3
unm 4
V)

But this equation is satisfied by so = s, the similarity dimension of ®;. Thus
dimgp, (P1) = dimggy, (P2).
If E is the unique non-empty compact set with £ = Ule ¢;(E), then iterating gives
k k

U ¢;(E)
1

i=1 j=

E

k k

U U ¢i0os(E)

i=1j=1

U ¢®).

PED2

Thus F is also the (unique) non-empty compact set with F = U¢e<1>2 ¢(E), so the attractor of ®; is the
same as the attractor of ®5.

[6 marks, unseen]



B8 a) Let

Ns(E) :=min{k : 3 a § — coverld = {Uj}?zl of E}

Then log N+ (E
dimp(E) := lim sup Lé().
50 —logd

[bookwork, 3 marks]

b) Let {U;}¥_, be a d-cover of E.
Then {U; X Uj}ieqr,.. k}.jef1, -k} 18 a cover of B x E.

U; x Uj| = /U2 + |U; |2 < V/26.

Thus
N ss(E x E) < k* = (N5(E))>.
Therefore
log(Nygs(E x E) _ log((Ns(E))?)
—logd - —logd
Therefore
log(v/26 10g(N 55 (E X E) _ 2log(Ns(E))

log & —log(v/26) - —logd

Taking limsup as § — 0, and observing that % — 1, gives

[exercise sheet, 6 marks]

c) Given § > 0 let k € N satisfy

1 1

1 1
%—fraclk—&—l: <0< =

kk+1) ~ " T k(k—1) k-1

Then each member of the set {1, %, e %} is separated by at least §. So
1
Ndelta(E) Z N5({17 ) E}) = k.
On the other hand, since k%rl < k§ we have
N(S [07 7] < ka

and hence

1
Ng[O,f’l"(lClk#‘l} +N5{17§a )
= k+k=2k.

Ns(E)

IN

1
k

}

T =



This gives
log k < log(N5(E)) < log 2k

—logd = —logd — —logd’
Hence
logk < log(Ns(E)) < log2k
log(k(k+1) — —logd ~ log(k(k—1)
Now
log k _ 1 . 1
lOg(k(k + 1) - 1iog(k+1) 2°
log k
Similarly
log(2kh) 1tk 1
_ - log(k—1 9°
log(k(k—1)) 1+ % 2

[previous two lines could be omitted)

Thus, letting § — 0 (k — o0) gives

_log(Ns(E) 1
lim ———> = —.
6—0 —logd 2

[bookwork, 8 marks]

d) E=09n][0,1]is an example.
[combining facts from different bits of bookwork, 2 marks]

e) Let {U;},cs be a d-cover of G.
Let k be such that kd < 1 < (k+ 1)d. Then

{U; x [i6, (i + 1)d]}jes1<i<k

is a v/26-cover of G x [0, 1].
Hence N /55(G x [0,1]) < N5(G).

So
log(v/26) log N5 (G x [0, 1]) _ log(N5(G)) +1log(d~")
log delta — log(\/%) - —logéd
Taking limsup gives
Tmp(G x [0,1]) < Tmp(Q) +1 = g

[unseen, 6 marks|
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MATH32032 SOLUTIONS
SECTION A

Answer ALL questions in this section (40 marks in total)

A1. (a) Define what is meant by:
Answer. [bookwork — 141+41+1+1=5]

— a word x of length n in a finite alphabet F’;

[Answer: an element of F" = F X --- X F (or equivalent)]
— a code C of length n in a finite alphabet F’;

[Answer: a non-empty subset of F"|
— the Hamming distance d(x,y) between two words x, y of length n;

[Answer: the number of positions where the two words differ]
— the minimum distance d(C') of a code C;

[Answer: min{d(x,y) : x,y € C,x # y}|
— a binary code. B B B

[Answer: a code in the alphabet Fy = {0, 1}]

(b) Define the trivial binary code of length n and the binary repetition code of length n. For each
code, write down the parameters [n, k, d], and explain briefly why k, d, ¢ are as you state.

Answer. [seen — 5]

Both codes are binary, meaning that ¢ = 2.

The trivial binary code of length n is the set F} where Fy = {0,1}. The set F} has cardinality
M = (#[Fy)" = 2" (this does not require erplanation); by definition, k = log, (M) = log,(2") = n.
The minimum distance of the trivial code is 1 and is attained at, say, 000...0 and 100...0. An
[n, n, 1]s-code.

The binary repetition code consists of the two codewords 000...0 and 111...1; & = log,(2) = 1 and
the distance between the two codewords is n which gives the minimum distance of the code. Hence
it is an [n, 1, n]s-code.

[10 marks]

1
A2. In this question, C is the binary linear code with generator matrix [0 Lo 1} .

11101

(a) List all the codewords of C' and check that d(C') = 3. How many bit errors can C' detect? How
many bit errors can C' correct? Write down the generator matrix of C' in standard form.

Answer. [standard; similar codes were considered in class for which this was done — 5]

C = {00000,01011,11101,10110} generated by [(1) (1) (1) 1 (1) in standard form. By inspection

d(C) = w(C) =3 so C can detect up to d — 1 = 2 errors and correct up to [(d — 1)/2] = 1 error.

(b) Explain what is meant by a binary symmetric channel with bit error rate p, BSC(p). If
0 <1 < n, state without proof the formula for the probability that ¢ errors occur in a message
of length n, transmitted down this channel.

1of 7 P.T.O.
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Answer. [bookwork — 5]

BSC(p) is a binary channel, that is, it takes one binary symbol z = 0 or 1 as input and outputs the
symbol x with probability 1 —p and the symbol 1 —z with probability p. (A diagram can be drawn to
represent this.) The channel is memoryless, that is, the probability of an error occurring in a given
symbol does not depend on previous errors. The probability of ¢ errors occurring in a message of
length n is (7)p'(1 — p)" .

(c) If the code C'is transmitted via BSC(p), calculate Pyydetect (C'), the probability that the received
vector contains an error that is not detected. Set p = 0.01 and show that the probability that
an unencoded two-bit message sent via BSC(0.01) is received with one or more errors is at
least 5,000 times greater than Py,qetect(C)-

Answer. [routine; such examples were done in class — 5]

Pindetect (C) = 2p%(1 — p)? + p*(1 — p). (The general formula is We(p,1 — p) — (1 — p)™ where
We(z,y) = >, Aix'y™ " is the weight enumerator.)

By (b), the probability of a two-bit message arriving with errors is 2p(1 —p) +p* = 2p — p* = 0.0199.
A crude upper bound for Pugetect (C) is 3p® = 3 x 107¢; clearly 5000 x 3 x 107¢ = 0.015 < 0.0199.

(d) Explain why two vectors of weight 1 cannot lie in the same coset of C. Conclude that there
are five cosets with coset leaders of weight 1. You are given that coset leaders have weight at
most 2; use this information to find P,,..(C), the probability that a codeword transmitted via
BSC(p) is decoded correctly (leave your answer as a polynomial in p).

Answer. [easy rider + standard formula — 5]

If u,v are of weight 1, u # v, then u — v has weight 2 hence cannot lie in C' as w(C) = 3. So u,v
cannot be in the same coset (alternatively: it was shown in the course that each vector of weight
<t=[(w(C)—1)/2] is a unique coset leader).
A vector of weight 1 must be a coset leader (the only coset containing the vector of weight 0 is
C' and has no vectors of weight 1), hence there are five coset leaders of weight 1, one coset leader
of weight 0, and the remaining 2572 — 6 = 2 cosets have coset leaders of weight 2. This leads to
Peore(C) = (1 = p)° + 5p(1 — p)* +2p*(1 — p)*.

[20 marks]

A3.

(a) Define the ISBN-10 code. State, with justification, the number of codewords and the weight
of the code. Show that when two unequal symbols are swapped in a codeword, the resulting
word does not belong to ISBN-10. (You may use the fact that ISBN-10 is a linear code and
you do not have to prove this.)

Answer. [bookwork; all covered in lectures or examples classes — 7]

The code is C' = {(z1, T2, ...,710) € FIY | 1oy + 229 + ... + 10219 = 0 in the field Fy;}.

The first nine symbols of a codevector are arbitrary elements of Fy;, giving 11° combinations, and
the last symbol is uniquely determined by the formula x1g = 1 + 229 + 323+ - - - + 9x9. Hence there
are 11% codevectors. (There are alternative ways to work that out, e.g. by determining the dimension
from a one-row check matriz. They are also acceptable.)
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The weight of the code is 2 and is attained at, e.g., 1000000001. A vector of weight 1 is not a
codevector: if z; # 0 and ; = 0 (j # i), the checksum Z;il jxj is ix; which is not zero as i # 0 and
x; # 0 in the field Fy;.

If x;, z; are swapped in a vector, the checksum changes by (ix; + jx;) — (ix; + jz;) = (i — j)(x; — ;)
which is not zero in Fy; as long as ¢ # j and z; # z;. Hence a codevector (with checksum zero)
becomes a non-codevector.

(b) Alice writes down all the codewords of ISBN-10 which are made up of symbols 0 and 1. Bob
then counts all the symbols that were written down and claims that there are more Os than 1s.
Do you agree with Bob? Justify your answer.

Answer. [unseen — 3]

Bob is wrong because there is an equal number of Os and 1s. The shortest way to work that out is
probably to observe that 1111111111 is a codevector (the checksum is 55 which is 0 in Fy;) hence the
map v — 1111111111 — v is a permutation of Alice’s set which replaces all Os by 1s and all 1s by 0s.

[10 marks]
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SECTION B

Answer TWO of the three questions in this section (40 marks in total).

If more than TWO questions from this section are attempted, then credit will be given for the
best TWO answers.

B4.

(a) Define the inner product on Fy. Define the dual code of a linear [n, k, d],-code C. Define a
check matrix of C' and state how many rows and columns it has.

Answer. [bookwork — 5]

o Yn), then x -y = 370wy, or x -y = EXT (accept either answer);

Ifx=(z1,...,20), Yy = (41,
0 Vc € C}. A check matrix of C is a generator matrix of C+. It has n — k

CL:{XEFZ‘EQZ
rows and n columns.

(b) State and prove the Distance Theorem for linear codes.

Answer. [bookwork — 5]

Theorem. Let H be a check matrix of C. Then d(C) = d if and only if every set of d — 1 columns of
H is linearly independent and some set of d columns of H is linearly dependent.

Proof. Recall that a vector x = (x1,...,2,) € [y is a codeword if and only if xH" = (. This can
be written as z1hy + Zahy + ... + Tphy, = 0 where El, .. ,En are the columns of H. The number
of columns of H that appear in the above linear dependency with non-zero coefficient is the weight
of x. Therefore, d(C'), which is the minimum possible weight of a non-zero codeword of C, is the
smallest possible number of columns of H that form a linearly dependent set.

(c¢) Show that the 7-ary code C' with generator matrix {1 230

. . _ J_
02 1 3} is self-dual, that is, C' = C-.

Find d(C') and justify your answer.

Answer. [standard; both parts appeared in examples done in class — 5]

It was shown in the course that a code with a £ x n generator matrix G is self-dual, if and only if

n = 2k and GGT = 0. We have 4 = 2 x 2 here, and can calculate GGT = [174 174} = {8 8} , hence

C is self-dual. Then G is also a check matrix for C; G has no zero columns and no two columns
are proportional (by inspection) so d(C') > 3; rows of G which are codevectors have weight 3 so

d(C) = 3.

(d) Prove: if D C F? is a self-dual code, then 2 < d(D) < (n+ 3)/2. Any results from the course
can be used without particular comment.

Answer. [unseen but main ideas appeared in the course — 5]
It was shown in the course that k = n/2 for a self-dual code. By the Singleton bound d(D) <
n—k+1=(Mn/2)+1<(n+3)/2.

To show that 2 < d(D), equivalently 2 < w(D), observe that ¢ - ¢ = 0 for any codevector ¢ € D.
It is enough to check that non-zero vectors with this property have weight at least 3. Indeed,
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c-c=c+...+c2; the square of a non-zero ¢; € F; can be 1, 2 or 4, and the sum of two squares is
never zero in .

[20 marks]

B5.

(a) State without proof the Hamming bound and the Singleton bound for codes in Fy; of minimum
distance d. Define what is meant by a perfect code.

Answer. [bookwork — 3]

Hamming bound: M |S,(0)] < ¢" where ¢t = [52] (or any of the equivalent statements).
Singleton bound: M < ¢"~9*! (or any of the equivalent statements).

A code for which the Hamming bound is attained (i.e., holds with an equality) is a perfect code.

(b) Write down the length, dimension and weight of a Hamming code Ham(r,q). Prove that
Hamming codes are perfect.

Answer. [bookwork — 5]

Length n = (¢" — 1)/(¢ — 1), dimension &k = n — r, weight 3. To prove that a code with these
parameters is perfect, note that ¢t = [(d — 1)/2] = 1 and write the Hamming bound in log-form for a
one-error-correcting code: k <n —log,(1+n(q — 1)) which is n —r <n —log, (14 (¢" — 1)) — the
equality holds.

(c) Describe the decoding algorithm for a Hamming code with a check matrix H over IF,. Explain
briefly why the algorithm is valid.

Answer. [bookwork — 5]

We fix an r x n check matrix H for Ham(r,q). When a vector y € F} is received, calculate its
syndrome S(y) = yH?”. If it is zero, return y, otherwise find A\ € F, and ¢ € {1,...,n} such that
S(y) =\ x ith column of H. Decode y by subtracting A from the ith symbol of y.

Justification: it was shown in the course that for a perfect linear code with ¢ = 1, such as Ham(r, q),
the coset leaders are 0 and vectors of weight 1. The syndrome of the coset leader Ae; of weight 1
is equal to A x ith column of H, so \e; is the coset leader of the coset of y. Hence y is decoded to
Yy — Aé; as per general syndrome decoding. B B

(d) Prove that all 2017-ary perfect codes with fewer than 20172°'7 codewords attain the Singleton
bound. You may use any results from the course without giving a proof.

Answer. [unseen — 7]

q = 2017 is a prime number so the classification theorem for perfect codes applies (it requires the size
of the alphabet to be a prime power). Since q # 2,3 (ruling out repetition codes and Golay codes), by
the classification theorem C' must have the same parameters [n, k, d|, as a trivial code or a Hamming
code.

Trivial codes attain the Singleton bound: k =n,d=1sok=n—d+ 1.

A code with parameters of Ham(r,q), r > 2, has ¢® codewords where n = (¢" — 1)/(q — 1) and
k = n —r. The question says that ¢* < ¢% so k < ¢. This is only possible if r = 2: e.g., write
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= (¢"'—=1)+ ...+ (¢ — 1) which is at least (r — 1)(q¢ — 1), greater than ¢ if r > 2. Hence

k
k=n—2=n—d+ 1 since d = 3 for Hamming codes; the Singleton bound is attained.

[20 marks]

B6.

(a) What is a cyclic code? What is meant by an ideal of a commutative ring R? Briefly explain
how a cyclic code of length n over F, can be viewed as an ideal of the ring R,, = F [z]/(z™ —1).
Answer. [bookwork — 5]

A cyclic code is a linear code C' C Ty with the property that (ag,a1,...,a,1) € C =
(a1,...,an,_1,a9) € C. An ideal is an additive subgroup I C R such that RI C I. Under iden-
tification (ag,...,an_1) — ag + a1x + -+ + a,_12" ', a cyclic code is linear hence is an additive
subgroup of R,; also, closure under cyclic shifts translates into xC C C| so by iterating this we
obtain z'C' C C for all i hence by linearity R,C C C as required.

You are given a factorisation of the polynomial 27 — 1 into irreducible polynomials over the field Fs:
2" —1=(z+ 1)@ +z+1)(* +27+1).

(b) Show that there exist two binary cyclic codes of length 7 and dimension 3. Write down the
generator polynomial and a generator matrix for each of these codes. By comparing the two
generator matrices, or otherwise, show that the two codes are linearly equivalent.

Answer. [standard; these cyclic codes were considered many times in the course — 5]

Binary cyclic codes of length 7 and dimension 3 are in one-to-one correspondence with generator
polynomials of degree 4 which are factors of 7 — 1 in Fy[z]. From the above factorisation, there are
two such polynomials,

g@) =@+ (@@ +r+)=a"+2°+2°+1 and @g2)=(z+D@*+2°+1) =2+ 27 + o+ 1,

giving rise to the generator matrices
1011100 1110100
Gi=10 101 110 and Go=1(0 1 1 1 0 1 0
0010111 0011101

which generate the codes € and C5. Observing that Gy is obtained from G by permuting columns
(e.g., permutation 2 — 6 — 4 — 2, 3 <> 5 or notice that both matrices are made up of all possible
non-zero columns of size 3 — they are parity check matrices for Hamming code Ham(3,2)), we
conclude that C] is linearly equivalent to Cs.

(c) Does either of the codes constructed in (b) contain vectors of weight 57 Justify your answer.

Answer. [one of the codes, and the even weight property, was discussed at length in class — 3]

No. The rows of both generator matrices are of weight 4 hence lie in the even weight code E7.
Therefore, both C and C5 are subspaces of F;, and all their codevectors are of even weight.

(One can write down all the 8 codevectors of each code, but that will cost students time in the exam.)
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(d) Prove: if n is odd, a cyclic code C' C F} with w(C') > 3 has no codevectors of weight n — 2.

Answer. [unseen — 7]

Assume for contradiction that C' 3 v where w(v) = n — 2. Then v is of the form
11...1011...1011...1,

with zeros in the ith and (i + k)th bits. The cyclic shift by & bits to the right gives codevector v/
with zero in the (i + k)th bit. The other zero in v’ is in position (i + 2k) mod n; this cannot be i,
otherwise one would have 2k = n, impossible since n is odd. Therefore, v and v’ differ in exactly
two positions, ¢ and (i 4+ 2k) mod n. Hence v + v’ € C' is of weight 2, contradicting w(C') > 3.

[20 marks]

END OF EXAMINATION PAPER
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MATH32072

The best three answers count.

1.

(a)

(c)

Bookwork (Stating a definition.)
A finite simple continued fraction is an expression of the form

1
[$03$1>$27---a33n} =To+ 1
xr, +
1
To +
1
.xn
where n > 0, xg € Z and x4, ..., x, are positive integers. [2 marks]
An infinite simple continued fraction [xq : 1, z2, .. .] is the limit of the sequence of finite simple
continued fractions [zg : 1, T2, ..., 2], as n tends to infinity. [2 marks]

Bookwork (Describing a method.)
A real number has an infinite simple continued fraction representation if and only if it is
irrational. 2 marks]

To find an infinite simple continued fraction representation of an irrational a:

Step 1:  Set o = «, xo = |ap], €1 = Qg — Xo.

1
Step k:  Set ap_1 = -~ Tp-1 = |ag_1], €k = p_1 — Tp_1.
k—1

The algorithm produces an infinite sequence of positive integers {xj}r~o, yielding the infi-

nite simple continued fraction representation o = [xg : z7,%9,...] (i.e. the corresponding
sequence of finite simple continued fractions converges to our original irrational nur[rzl)’ber ak)]
marks

Standard exercise.

(i) We apply the Euclidean algorithm:

24 = (1x19)+5
19 = (3x5)+4
5 = (Ix4)+1

4 = (4x1)+0.
To find the solution, we work through the Fuclidean algorithm backwards:
1 = 5—(1x4)
= 5—(19—-(3x5))
(4x5)—19
(4% (24— (1x19)))—19
(4 x 24) — (5 x 19).

Thus (z,y) = (4, —5) is a solution. [4 marks]

1of8 P.T.O.



MATH32072

(ii)) The continued fraction expansion can be read off from the numbers m; given in the
Euclidean algorithm (a; = m;b; + ;). This gives

24

— =11:3,1,4]|.

19 | 1,4]
[4 marks]

(d) Bookwork (These proofs were covered in lectures.)
(i) Base case: When n = —2 we have
pP1g2—paga1=1-0=1=(-1)"2

[1 marks]

Now suppose that p,11¢, — Pagni1 = (—1)™ holds for some n > —2. Then

Prt2@nil = PntiGniz = (Tng2Dni1 + Pu)@nst — Pott(Tnt2Gnit + Gn)
xn+2(pn+IQn+1 - pn-l—lQn-H) + (ann—H - pn+lqn)
~(Pn+1Gn — Pnlnt1)

e

Finally we note that [3 marks]

Pnt2@n = PnGns2 = (Tni2Dni1 + Pn)dn — Pr(Tns2Gnir + o)
= Tn2(Pn+19n = Pun+1) + (Pan — Pndn)
= Tn2(Pni1Gn — Prny1)
= Zppo(=1)"™

[3 marks]
(ii) By (i) we have

Int2 0 if n is even.

qnqn+1’

n —Tn42 : :
Ptz Pn _ (=1)"Tngo I By if n is odd,
n+2 Qn qnGn+2

As z,,2 > 0 and ¢, is a sequence of positive increasing integers, the result follows.

[3 marks]
(iii) By (i) we have
Pnt1 _ Pn _ (—1)" _ qn;:H, if n is odd,
Gn+1 9n  GnQn+1 qnq1n+1= if n is even.
Thus
Pont1  Pon _ 1 50
q2n+1 G2n qndn+1 ’
as required.
[3 marks]
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(a) Bookwork (Stating a definition and a result.)
A periodic simple continued fraction is an infinite simple continued fraction of the form

[3:0:Ilw"7xk—£7y07"‘7y£7y07"'7y£7"']7

initiarblock repeats repeats

where z¢ € Z, z;,y; € N, k>0 and r > 0.
[2 marks]

A real number o can be represented by a periodic simple continued fraction if and only if it is
a quadratic irrational (that is, if « is an irrational root of a quadratic polynomial with integer
coefficients).

[2 marks]

(b) Bookwork (Describing a method.)
To find all solutions: We can use the continued fraction expansion of v/d. This has the form
Vd = [zg : T1, ;%) for some r > 1. The positive solutions to Pell’s equation are & = py,_1,
Y = qrr—1 Where k ranges over all positive integers such that kr is even. The full set of solutions
is therefore (+1,0), (£prr—1, £qrr—1), (£Prr—1, Fqkr—1)-
[4 marks]

(c) Standard exercise.
We apply the continued fraction algorithm. This gives

Qg = \/26, Zo :5, &1 = \/26—5,
1 V26 +5
a = = =V26+5, z1 =10, g2 = V26 — 5.
YT V26-5 (V26 +5) (V26 — 5) ' ?
Since 9 = g1, step 3 will produce the same results as step 2, step 4 will produce the same
results as step 3, and so on. Thus we conclude that v/26 = [5 : 10].

[3 marks]
Using the recurrence relations, we find that
i -2 -1 0 1 2 3
x; 5 10 10 10
p;, 0 1 5 51 515 5201
¢ 1 0 1 10 101 1020
Therefore the first four convergents are
51 515 5201
’107 1017 1020°
[4 marks]

(d)(i) is an exercise. The rest are variants of exam questions from previous years

(d) (i) #* — 26y*> = 1. This is Pell’s equation, so a positive solution can be found using the
continued fraction expansion of v/26. From above we have v/26 = [5 : 10]. Since the

period is 1 the minimal positive solution will be (z,y) = (p1,¢:1) = (51, 10).
[4 marks]

3of8 P.T.O.



MATH32072

(ii) 2022 — 26y*> = 1. The left hand side is divisible by 2, but the right hand side is not.

Therefore, there are no integer solutions.
[2 marks]

(iii) 2% — 26y? = —1. There is the solution (z,y) = (5, 1).
[2 marks]
(iv) 42% — 9y? = 1. Factorising gives (2z — 3y)(2z + 3y) = 1. The only way this can happen
is if both factors are equal to £1. But 2z + 3y > 1 for all positive integers z,y, showing

that there is no positive integer solution.
[2 marks]

(e) Difficult exercise (A couple of similar problems appeared on the exercise sheets.)

Let w = [a : b]. Then we have

- - 1 - w _abw+a+w
w=a ) l_a bw+1 T+l bwtl
w

Rearranging gives
bw?® — abw — a = 0.

Applying the quadratic formula gives

ab £ \/ab(ab + 4)
2b '

W =

However, as w > 0, we need to take the + sign above. This completes the proof.
[5 marks]
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3.

(a) Bookwork (Stating a definition.)
Let [a] € Z,. We say that [a] is a unit if there exists [b] € Z,, such that [a][b] = [b][a] = [1].
2 marks]
Bookwork (Standard proof seen in class.)

la] € Z,, is a unit if and only if there exists b € Z such that ab = 1 mod n. By definition of
congruence modulo n, this is the case if and only if there exist b, k € Z satisfying ab — kn = 1.
It is clear that the latter implies that ged(a,n) = 1. On the other hand, if ged(a,n) = 1, then
(e.g. by using the Euclidean algorithm) one can write ab — kn = 1 for some integers b, k. Thus
[a] is a unit modulo n if and only if @ and n are coprime. [3 marks]

(b) Bookwork (Stating a definition.)
We say that a unit a is a primitive root modulo n if the cyclic group generated by a is equal

to the group of units U, (i.e. if every unit can be represented as a power of a mo[dulo n.
2 marks

(c) Standard exercise

(i) As 7 is prime, we have |Uz| = ¢(7) = 6. The possible orders of elements in U7 are 1,2,3,
and 6. By trial and error we find that 32 = 2 mod 7 and 3% = 6 mod 7. Hence 3 does not
have order 1,2, or 3, thus has order 6 and so is a primitive root.

[2 marks]

(i) We have Ug = {[+1], [£3]}. We find that (=1)*> = 1 mod 8 and (—3)? = 1 mod 8. Thus

every element has order 2, so there is no primitive root.
[2 marks]

(d) Bookwork (Stating results.)

Lagrange’s polynomial congruence theorem: Let f(z) be a polynomial of degree d with integer
coefficients and let p be a prime. If some coefficient of f is not divisible by p, then the congruence
f(z) =0 mod p has at most d solutions modulo p.

[2 marks]

Fermat’s little theorem: Let p be a prime and a an integer not divisible by p. Then a?~! =
1 mod p.
[2 marks]

(e) Exercises

(i) As 13 is prime, by Fermat’s little theorem the congruence is equivalent to z*> — 1 =
0 mod 13. By Lagrange’s congruence theorem there are at most 2 solutions. However

x = £1 mod 13 are solutions, thus these are all of them.
[2 marks]
(i) Since 169 = 0 mod 13, the congruence can be equivalently written as 12z* = 0 mod 13.
Since 12 is invertible modulo 13, this is equivalent to z* = 0 mod 13. Thus 13 | z*
and hence, as 13 is prime, we have 13 | z, so the congruence has the unique solution

z = 0 mod 13.
[2 marks]
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We note that x is a solution to the congruence if and only if it is a solution to the pair of
simultaneous congruences x'22 43924 +12 = 0 mod 2 and 2'??4392%** 412 = 0 mod 13, or
equivalently (by reducing the coefficients) z'?2 + 2 = 0 mod 2 and z'*> — 1 = 0 mod 13.
It is clear that the first congruence is satisfied for all = (e.g. by Fermat’s little theorem).

For the second congruence, we use Fermat’s little theorem to see that it is equivalent to
2> —1 = 0 mod 13. We already solved this in (i). Thus the solutions to the original

congruence are r = +1 mod 13, which gives x = 1,12, 14, 25 mod 26.
[3 marks]

Bookwork (Stating a definition and a result.)
We define ¢ : N — N by setting ¢(n) equal to the number of positive integers less than
or equal to n which are coprime to n.

[2 marks]
If n = p{*---p* where the p; are distinct primes, then
p(n) = o@")eps’) - e(pi*)
= (7 = - (B ).
[2 marks]

Difficult variant on previous exam questions where it asked to show that ¢(n)
is even for all n > 2.

One easily checks that ¢(3),¢(4), and ¢(6) are all prime.
[1 marks]

Suppose that ¢(n) is prime. Then from the formula we see that

a1—1

(P = PP (8 — P32 - (o — Pt
is prime. The only possibilily is that one term is prime and all others are equal to 1. If
pa _ pa—l =1

for some prime p and some a > 1 then we find that

Similarly, assume that
pa _ pafl
is prime. If @ = 1 then p — 1 is prime if and only if p = 3. If @ > 2 then p® — p®~! is prime

if and only if p®~' — p®~2 = 1, which from the above gives p = 2 and a = 2. Bringing this
all together gives

{n € N: p(n) is a prime number} = {3,4,6}.
[3 marks]
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Bookwork (Stating two definitions.)
We say that a unit (invertible element) u of Z,, is a quadratic residue modulo p if 2 = v mod p
for some unit (invertible element) x € Z,,.

[2 marks]
Let a € Z. We define
0, ifp]a,
a
<—> =41, if [a] is a quadratic residue,
—1, if [a] is a quadratic non-residue.
[3 marks]
Bookwork (Stating a theorem.)
Euler’s criterion: Let p be an odd prime and let a € Z. Then
(2) = P V/2 mod p.
p
[2 marks]

Bookwork (Simple proof from the lectures.)

-1
For a = —1 we see that (—) = (—=1)®Y/2 mod p and thus (—) = (=) b2,
p p

Since p is odd, p—1 is even, and (p — 1)/2 will be even precisely when p = 1 mod 4. The result

follows.
[3 marks]

(i) Bookwork (Stating a theorem.) Let p and ¢ be distinct odd primes. Then

(2%) (g) = (PR [2 marks]

(ii) Standard exercises. Since 7 is a prime, we have U; = {1,2,...,6}. The set of quadratic
residues can be found by squaring the elements of U;.
[Using the fact that (p — x)* = z? mod p, we only need to compute the squares of 1,2, 3.]
1?=1mod 7, 22=4mod7, 3?>=2modT.

Thus Q7 = {1,2,4}. [3 marks]

(iii) Since 20 = 6 mod 7 and 6 is a quadratic non-residue modulo 7, we see that (2—70) =—1.

[1 marks]
Using the fact that (a_b) = (ﬂ) (é> gives
p p p

5y (3 D
31)  \31)\31)"
Now by quadratic reciprocity

B-HE-OO-
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(d) Difficult exercise.

(e)

One easily checks that 1 is the only quadratic residue modulo 3. [1 marks]

If p =1 mod 4, then by quadratic reciprocity we have

Thus

()-6)

p=1mod3 and p=1mod4.

The Chinese remainder theorem then gives the possibilities

p =1 mod 12.

If p = 3 mod 4, then by quadratic reciprocity we have

00

We find the possibilities

p=2mod3 and p=3mod4.

Thus by the Chinese remainder theorem we have

=11 mod 12.

Combining these, we see that 3 is a quadratic residue modulo an odd prime p if and only if

(i)

p = +1 mod 12.
[4 marks]

Bookwork (the proof was seen in the lectures) Since [a] is a unit each [a’] is a unit.

Hence (%) = 41. The even powers of [a] are clearly elements of @Q,,, since [a]?** = ([a]*)?2.

In fact the even powers of [a] are precisely the elements of Q,: if [b] € Q,, then [b] = [2]?

for some [z] € U,,. Thus [b] = ([a]*)? = [a]?** for some k, since [a] is a primitive root. We
have shown that [a]" € @, if and only if i is even, and the result follows.
[3 marks]

Similar to some exercises and already observed in class in some special cases.

We have |U,| = p— 1. As [a] is a primitive root, every element of U, has the form [a]
for some 1 < ¢ < p— 1. So exactly half of the elements of U, are an even power of the

primitive root [a]. The result now follows from (i).
[3 marks]

END OF EXAMINATION PAPER
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Two hours

UNIVERSITY OF MANCHESTER

GREEN’S FUNCTIONS, INTEGRAL EQUATIONS AND APPLICATIONS : SOLUTIONS

Answer ALL six questions (100 marks in total)

University approved calculators may be used.
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1.
(a) The adjoint operator £* and boundary conditions B* are defined by the requirement that whenever
u satisfies B, and v satisfies B*

(v, Lu) = (L0, u).

Marking guide: This is bookwork. Two marks for the formula involving the inner-products, and
one mark for the boundary conditions.

(b) The derivative is
p'(x)H(z) + p(0)d(x)

where ¢ is the Dirac delta function.

Marking guide: This is the basis for the method of finding Green’s functions in one dimension that
we studied in class. If p rather than p(0) is given in front of § then one mark will be deducted. One
mark for an indication they know that H' = .

(c) The free-space Green’s function for the Laplacian in two dimensions is
Gaoo ) _1 In(|x — xol)
(X, Xg) = X — Xpl).
2 0 5 0

Marking guide: This is bookwork. One mark if they give the three dimensional Green’s function.

(d) A Fredholm integral equation of the second kind has the form

F() = ulz) — A / K (. y)uly) dy.

The kernel is K(z,y), and the kernel is called degenerate if it can be written in the form
K(z,y) = Y w(z)v;(y).
j=1

Marking guide: This is book work. Two marks for equation, one mark for kernel, one mark for
degenerate.
2. First find the complementary solution by solving the characteristic equation

m*—m-2=0m=2, —1.

Thus a complementary solution is

u(x) = c1€** + e,

Now we find u; satisfying the left boundary condition and us satisfying the right boundary condition
which are
u(r) = e —e ™, wug(z) =¥ —8e .

Now calculate the Wronskian:
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Thus the Green’s function is

_ w(@)us(wo) 1 (o) usz(z)
G(I, lL'()) = WH({EO - I’) + WH(I — lL'())
B (621‘ _ e—x)(621‘0 _ 86—:60) (621‘0 - €—x0)<€2x _ 86—x)
= o H(xg—x)+ 1m0 H(z — ).

Marking guide: Students will have seen a number of very similar problems. A rough guide for
allocation of marks will be:

e Complementary solution: 3 marks.

Modifying complementary solution to satisfy appropriate BCs: 3 marks.

Wronskian: 2 marks.

Correct general formula for G: 1 mark

Correct final formula/no minor errors: 1 marks.

3. (a) This is a regular Sturm-Liouville eigenvalue problem, and so there are infinitely many eigen-
values.

Marking guide: This is book work. It is not necessary to say this is a regular Sturm-Liouville
problem, only that there are infinitely many eigenvalues.

(b) Let A be a fixed eigenvalue, ¢ a corresponding eigenfunction, and let £ be the differential operator
in the eigenvalue problem so that

Lo(z) = —Az*¢(2).
Since the boundary value problem is self-adjoint

Therefore B B

Since ¢ is not identically zero, the weighted inner product is not zero, and so this implies
A=A

which is equivalent to saying that X is real.
Marking guide: This problem is book work. A rough guide for marking:

e Using self-adjointness: 3 marks.
e Replacing Lo by —Az2¢: 2 marks.
e Bringing A in front of inner products with complex conjugation: 1 mark.

e Explaining that ¢ is not zero, and so division is possible: 1 mark.
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(¢) The associated boundary value problem would be

{ ir (P2 (@) = fz), 7e(1,2)
u(l) =0, wu(2)=0.

The condition to ensure that a unique solution exists is that zero is not an eigenvalue. If {\,}>°,
are the eigenvalues, and {¢,}22; the eigenfunctions, then the Green’s function for this problem is

G(z, —
(#20) Z Mo 2 |fn() P22 day

Marking guide: This problem is bookwork. Two marks for the boundary value problem, one mark
for the condition, and three marks for the Green’s function.

(d) There are two methods that could work. First, if ¢ satisfies the boundary value problem with
A = 0, then using integration-by-parts

o:/j%(ﬁ%(:ﬁ))ﬁdx:—/jﬁ

Since 2 > 0 on [1,2], this is only possible if ¢ is identically zero, and so A = 0 cannot be an
eigenvalue.
The second method involves solving the problem with A = 0 explicitly. This is

{%(aﬂ%@)):& v € (1,2)
¢(1) =0, ¢(2)=0.

2

d
—¢ dzx.

15 %)

The ODE is
229" 4+ 2x¢' = 0.

This is an Euler equation, and the indicial equation is
m(m—1)+2m=0=m=0,—1.

So the general solution is
d(x) = c1 + ot

Applying the boundary conditions we have
0=0¢(1) =1 + o, O:¢(2):cl+%:>01202:0.

Therefore, A = 0 is not an eigenvalue.

Marking guide: Students will have found eigenvalues, although not in the case of an Euler equation.
Thus this is likely to be a difficult problem. The marking will depend on the method used, but they
will be given three marks for work that shows they understand they need to show the only solution
of the problem with A =01is ¢ = 0.

4. (a) Suppose that C' > 0 is sufficiently large so that f(z) = 0 and k(x) = ko when x > C. Then
on the interval z > C

u//(l‘) -+ k(l’)Qu(x) =0 U(l’) — bleikox + er,ika.
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The boundary condition as x — oo is thus equivalent to
u'(z) — ikou(z) = —2ikobye % =0 for x > C < by = 0.
Therefore the time-dependent waves on = > C' are given by the real part of
U(z) = by et kor=wt),

which are waves moving to the right. Therefore all waves sufficiently far to the right are moving to
the right, which means no waves are coming from positive infinity.

On the other hand, suppose that C" < 0 is sufficiently negative so that f(z) = 0 and k(x) = ko
when 2 < C’. Then on the interval x < C’

u’ () + k(z)*u(z) = 0 & u(z) = are™® 4 age "
The boundary condition x — —oo is thus equivalent to
u'(z) + ikou(r) = 2ikpae™* =0 for z < C' < a; = 0.
Therefore the time-dependent waves on = < C” are given by the real part of
U(z) = age ithos+et)

which are waves moving to the left. Therefore all waves sufficiently far to the left are moving to the
left, which means no waves are coming from negative infinity.
Marking guide: This question is bookwork. Rough marking guide:

e Formulas for u when |z| is sufficiently large: 2 marks.
e Applying boundary conditions to these formulas: 1 mark.

e Connecting this to the time-dependent waves: 2 marks.
(b) When k(x) = ko is constant, the complementary solution is
Ue(z) = cre”HoT 4 cyethor,

Note that the boundary conditions are separated, and so we can use the general formula for the
Green’s function in this case. The Wronskian is

W = 2“1’0,
and so
o eik(:{:g—x) " eik(:c—xo) = eiko|x—xo\
(m,xo)—Tko (iL’O—%)—FTkO (l’-l’o)—Tko

Marking guide: This problem is bookwork. Rough marking guide
e Recognizing boundary conditions are separated, and general formula can be used: 2 marks.

o Wronskian: 1 mark.
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e Correct final formula for G: 2 marks.

(c) We have
u”(z) + k(x)*u(z) = 0.

Putting in u(z) = e*0® 4 u,.(z) we have
Upe(2) + k() use(2) = (k§ — k(2)*)e™® = ul.(2) + kjus(z) = (k§ — k(2)*)u(2).

Since ug, also satisfies the radiation conditions we can apply the Green’s function from part (b) to

get
oo k2 — k(x 2
usc(gj) — /oo eikolz—zo| 70 2Zk(() 0) U(ZEO) dzo.

Adding e we get that u satisfies the Fredolm integral equation

, 1 k2 — k(xo)?
u(m) _ ezkom +/ elk0|$—10|0.—(xo)u(x0) dxo‘
0 22]’6’0

Marking guide: This problem is bookwork. Rough guide for marking.
e Putting form for v into ODE: 1 mark.
e Arriving at non-homogeneous equation for u,.: 2 marks.
e Applying Green’s function: 2 marks.

e Adding e™0* to get final equation for u: 1 mark.

(d) Define the integral operator IC by

1 ]{72 _ k‘($ )2
_ iko|lz—x0| V0 0 d
Ku(x) /0 e T e— u(zo) dayo.

Then the Neumann series solution for the equation in (c) is
u(z) = Z KCretkor,
=0
Marking guide: This problem is bookwork. One mark for definition of K and two marks for series

formula.

(e) The Born approximation consists of that the first two terms in the Neumann series which are in
this case

kg — k(xo)”

21k
Marking guide: This problem is bookwork. Two marks for knowing what the Born approximation
is, and one mark for writing down the formula in this case.

1
U(.T) ~ ezkox +/ ezk0|:c—x0| ezkoxo d.To.
0

5. (a) Start by setting

c= / In(y)u(y)dy

6 of P.T.O.



so that the equation becomes

cx + f(x).

A
) ) =3

Multiplying this by In(z) and integrating from 1 to 2 we have

¢ = Wc < /1 " sn(z) dx) + /1 (o) f () d,

or, after evaluating the integral,
A 2
c (1 — Z) = / In(x)f(z) du.
1

This will have a unique solution c if and only if
A
1— 1 #0& \#£4.

In the case that A # 4 we solve for ¢ to get

1
- A
-7

C

[ st a

and putting this back into the original equation we find that

AT

") = T =g, ) A @

MATH34032

must be the unique solution of the integral equation. To answer (a) plainly then, there is a unique

solution for every continuous f if and only if A # 4.

Marking guide: Note that the marking for parts (a) and (b) overlaps somewhat.

e Define ¢ (2 marks)
e Find equation for ¢ from integral equation (2 marks)

e Correct conclusion. (1 mark)

(b) The answer to part (b) has already been found in the work above for part (a). The formula for

the solution is

AT
(1—2)(In(28) -3

u(z) = )[1mwﬂwdy+ﬂw

Marking guide: Note that the marking for parts (a) and (b) overlaps somewhat.

e Find equation for ¢ from integral equation (1 mark)
e Solve for ¢ (2 marks)

e Write down equation for u correctly (2 marks)

7 of
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(c) Looking back at the work on part (a), we see that when A = 4 we must have

/1 () f(z) de = 0

for there to be a solution. In this case ¢ can be anything, and so putting ¢ back into the original
equation yields the general solution
u(z) = cx + f(x)

where we have absorbed A\/(In(2®) — 3) into the arbitrary constant c.
Marking guide:

e Correct condition (2 marks)

e Correct general solution (2 marks)

6. a) First find the gradient V,G(x,x¢) when x # x( by the chain rule:

1 x—x¢

ViG(x, =——
(%, %o) 47 |x — %03

Now, V2G(x, xg) is the divergence of this gradient, which we calculate when x # x by applying the

chain and product rules

viG(x,x0)=i< 5 —3(X_X0)'<X_X°)>:0.

4\ |x — %3 |x — xq|°

Marking guide: We will have gone over this calculation in lecture.
e Correct gradient: 3 marks.

e Correct calculation of divergence: 3 marks.

(b) We apply Green’s formula from the cover of the exam with D = R3\ B.(xg), and g(x) = G(x, Xq)
to get

/R‘?’\B( )(ﬂX)VZG(X’ o) =G0, 30) V1)) dix = / (f(x)VxG(x,%0)—G(x,%0)V f(x)) n(x) ds(x)

OB (x0)

where n(x) = (x¢9 — x)/e is the unit normal vector pointing into B.(X(). Note that this is allowed,
and there is no contribution from any other boundary since f(z) = 0 for |z| sufficiently large. Next
we use part (a) which gives

/ %) VR (x) dx = / (F(X) VG, x0) — G(x, %0)V F(x)) - n(x) ds(x).
R3\ B¢(x0) 9Bc(x0)

Next, using the formula we found in part (a) for V4G (x, %) we have

/RS\BE(xo) Gl %0) V2109 dx = _ﬁ /BBE(XO) (%(X —Xo) + ;iiil) (%0 — x) ds(x).

8 of P.T.O.
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Finally, using the fact that on B.(xg), |x — xg| = €, gives

1

47re?

/ G(x,%0)V?f(x) dx / f(x)+ Vf(x)-(x—x0) ds(x).
R3\Be(xo0) OB (x0)

Notes for marking: This will be covered in lecture.
e Use of Green’s formula: 4 marks.

Correct identification of normal vector: 2 marks.

Use of formula for VG: 2 marks

Use of fact |[x — xo| = € on ball: 2 marks.

Final formula/no small errors: 1 mark.

(c) First we make the change of variables suggested, r = (x — xg)/€ on the right hand side of the
formula from (b) to get

/ G(x,%0)V2f(x) dx = 4i f(xo+er)+eVf(xg+er) rds(r)
R3\ B (xo) T Js2

Now, since f has continuous derivatives, |V f| is bounded, and so upon taking the limit the second
term on the right goes to zero, and for the other terms we get in the limit ¢ — 0

1

[ Glxx0) V10 dx = flxo) = [ = pixa)

where we have used the fact that the area of the unit sphere is 47 as given on the front of the exam.
Marking guide: This problem will be covered in lecture.

e Making change of variables: 3 marks.
e Arguing why V f term goes to zero: 1 mark.

e Using volume of sphere: 1 mark.

9 of P.T.O.
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MATH35032: Mathematical Biology
Solutions to the June exam, 2017

The marking scheme in these solutions is provisional: I may revise it slightly
after I've reviewed the scripts, which is why I haven’t included the same level of
detail on the exam paper itself. The remarks below sometimes refer to the previous
exam papers for the years 2014-2016: these are the ones readily available to current
students.

A1. This problem should be new to the students, but we’ve studied many similar
things.

(a) [3 marks] The ODE

dN N
N2 (1= 2
a ( K)

is reminiscent of the logistic growth law and the parameters are similar too.

If we think of N(¢) as the number of animals (as opposed to the population

density)

r the intrinsic, per-pair growth rate of the population: it has units of 1/(pandas x time).
K the carrying capacity of the environment. In this problem it has the same

units as NV, pandas.

(b) [3 marks] A suitable change of variables is

x:? and T:thort:TLK.
Then one can compute
du du dt dN

dr dN dr dt

- E () (-3
- £(-9
= 2*(1-2),

where the last line is the expression we were aiming for.

(¢) [4 marks] One can sketch dx/dr (see below) and then use topological argu-
ments to say that if zy > 0 then one of the following three things must happen:
(i) 0 < o < 1: then z(t) is monotone increasing and lim;_,o, z(t) = 1;

(ii) xo = 1: this is a stable equilibrium, so z(t) = 1 for all time and, trivially,
limy o x(t) = 1;



(iii) zp > 1: then z(t) is monotone decreasing and lim;_,, z(t) = 1.

Panda ODE
o
un
N pa—
o
+» O
O
> 8 - e > > > <
o (@)
o
Yo}
N
) | T T T |
0.00 0.25 0.50 1.00 1.25
Population N

One could, alternatively, integrate the ODE directly,

z(t) d t
/ S = /dS

x0 $<1—I) 0

/ —|—x+ de = t
2 x? 1—x
@11 1

/ (—2+—+ >da; = ¢
20 x r l—=z

but the result for z(¢) is only implicit. All the same, it is clear that as t
increases, the right hand side of the equation above grows without bound and
so the left hand side must do so as well. The only ways for this to happen
are for x(t) to tend to zero or one and, as x = 0 is unstable, the only real
possibility is that lim; . z(¢) = 1.




A2. A similar, but not identical problem appeared on 201}’s exam and the relevant
material is discussed both in lecture and in the problem sets.

In the language of Uri Alon and his collaborators:

o /2 marks] A motif is a small, directed, weakly connected subgraph of a regu-
latory network that has no parallel edges and no loops: they are interesting if
they appear more often that one would expect by chance.

e [3marks] A 3-node feed-forward loop (FFL) is a regulatory motif in which one
gene, say X, controls the expression of another, Z in two ways: directly, and
indirectly, through the expression of a third gene Y. Such a loop is coherent
if the both the direct and indirect influences of X on Y have the same sign
(that is, both are repressing or both are enhancing). There are four coherent
three-node FFLs (all illustrated below) but a correct answer to the question
need only include one of them.

Both influences are enhancing Both influences are repressing

Here a blunt-ended arrow indicates repression while a sharp-ended arrow in-
dicates an enhancing regulatory interaction.

The remaining 5 marks are for the following argument.

To find the desired probability, consider assembling the adjacency matrix of the
network at random. We need to scatter E 1’s (representing the F regulatory inter-
actions) among the N x N elements of the matrix. Further, as we exclude parallel
edges, we need to place the 1’s in distinct positions. There are thus

possible random regulatory networks, all equally likely.

To count the networks that contain the two-node feedback loop pictured in the
exam, note that one first needs to choose the two genes that participate in the loop.
Installing the two interactions that define the loop then leaves a further (E — 2)
interactions to be accounted for, which suggests that there are

(1)(5)

networks containing the two-node motif. If £ > 4 this formula will over-count
networks that include more than one examples of the motif and so one must account
for the possibility that the graph contains two or more such mutually-influencing



pairs (one needs to do an inclusion/exclusion sum), but as the problem asks about
the case ' = 3 there can be at most one such pair, no over-counting is possible, and
the desired probability is just

(7)(47)
2 1 21 x 47 3
P = — X —

( 49 ) 18424 56
3



A3. We studied the Lotka-Volterra system extensively, both in lecture and in ex-
ample classes, though mainly in dimensionless form, so the conserved quantity in
part (b) may thus look slightly unfamiliar. The calculation in part (c) comes directly
from a problem set.

(a) [2 marks] At an equilibrium (N,, P,) one has dN/dt = dP/dt = 0 or
0= N,(a — bP,) and 0 = P.(cN, — d).

The first implies that either N, = 0 or P, = a/b, while the second says either
P, =0or N, =d/c. Thus the only equilibrium with both populations positive

1S

N=2ana P=2
c b

(b) [5 marks in total, distributed as indicated below]

e [1 mark] A constant of the motion is a function H : R* — R such that,
for any solution to the ODEs (N (t), P(t)) we have

H(N(t), P(t)) = a constant = H(Ny, P)

where (Ny, Py) = (N(0), P(0)) is the initial data.

e /1 mark] The constancy of H along trajectories implies that H satisfies

the PDE
OHdN 9HdP

Tt = 1
oN di T oPdt " (3.1)
e /2 marks] For the proposed function

oH d oH a
N (C_N)H and - Gp=(b-p)H

e /1 mark] Substituting these into the PDE (3.1)) leads to:
N HN(a—bP) + <b “) HP(eN —d) = 0
c— a 2 c =

(¢cN—d)H(a—bP)+ (bP —a)H(cN —d) = 0
0 =20

(c) [3 marks] Suppose (N(t), P(t)) is periodic with period T". From the original
ODEs, we know

dP 1 [dP
%—P(CN—CZ) or F(E)—CN—CZ

If we integrate both sides of this equation over one period we find

/OT% (Ciz_];) di = /OT (eN —d) dt. (3.2)



Treating the left-hand side first, and changing the variable of integration to

P, we find
[#(@)e = [, ()
= In(P(T)) — In(P(0))
— 0 (3.3)

where the last equality follows as P(T") = P(0) by the T-periodicity of P(t).
On the other hand, we can also integrate the right-hand side of (3.2 to get

/OT(CN—d) dt = c(/OTN(t)dt> —dT

= ¢I'N —dT. (3.4)
Putting (3.3]) and (3.4) together yields
0=cI'N—-dI' ot N=-=N\,,
c

which is the result we sought.



B4.

We studied the Principle of Competitive Fxclusion using a model similar to

the one here, but with m; = mo = 0. These added terms complicate matters and
make the problem more interesting and challenging.

()

(b)

[2 marks] The m; are dimensionless numbers that specify the rate at which
animals are removed. For example, the ODE for N; is the same as in a standard
two-species competition model, but with an added term —r;m;N;. If both m;
exceed one, then (1 —m;) < 0 in both equations and so the factors

N1 —|—CL1N2 N2—|—CL2N1
1—m1—T and 1—m2—T
1

are both strictly negative. In this case the only biologically sensible way to
make the right-hand-sides of the ODEs vanish is to set Ny = Ny = 0. Any
other equilibria would involve negative populations for one or both species.

[5 marks] Suitable choices are

N, N .
K, K, Ten

Then standard calculations lead to

du _de(dudv,
dr dr \dN; /) dt

1 /1 Ny + a1 Ny
= (=) N (1= — L1772
T (Kl)rl 1( m Ky )
N, N, K>\ N,
- 1 m =L A2 2
K, ( ™o T (“1 K1> K2>

= u <(1 —my) —u+ <a1%> v)

which has the desired form provided we define

K,
m=1-=m) and o =a; (K1>
Similar calculations for dv/dr lead to

Ty K,
P=0r Y2 =(1—m2) and §=a, (Kg)

[5 marks] Null clines are curves on which one of the two derivatives vanish.
Figure |B4.1| provides the desired sketches and shows that when a < v, <
1/ < 1 and 2 = 1, the equilibria (u,,v,) are (u.,v.) = (0,0), (0,1), (71,0)

and
('U/ U)I M —Q 1_571
oo 1—aB’ 1—ap
The conditions o < 7 < 1/ < 1 ensure that this last equilibrium has positive
coordinates, as they imply that (1 —af) > 0, (71 —a) > 0 and (1 — 5v;) > 0.




A

v a<y <1B<1

v,=1
©,y/o) |-

©0,1) ¢

(u.,v,)

c A
00  (,0 A/BO) wu

Figure B4.1: Null clines and equilibria for the case a < v < 1/ < 1 and ~, =
1. Here the curves on which du/dr = 0 are shown in blue, while those on which
dv/dt =0 are in red.

(d) [4 marks] The general linearisation is

. (71 — 2u — av) —ou
—pBu p(v2 — 20 — Bu)
and, at an equilibrium (u,,v,) where both populations are nonzero, we also

know
(71— ux — avy) =0 = (72 — ve — Buy).
But then the diagonal entries in A simplify:

(71— 2uy —av,) = —ue+ (71 — up — auy)
= —u*
P2 = 2u, —av,) = —pue+ p(72 — U — Q)
= —pU,

(e) [7 marks] The table below summarises the linear stabilities of the equilibria
for the case a <y < 1/8 <1 and 7, = 1.

(U, Uy) A Stability
m 0
0,0 unstable node
0.0) K
n—a 0

(0, 1) "8 —p saddle

-N —am
(71,0) [ 0 p(1—p) } saddle

nm—a 1-=7537 —Uy  —QUy
tabl d



The stability for the node with coexisting populations follows because

Tr(A) = —(us + pvy) <0 and det(A) = puvi(1 — af) > 0.

(f) /2 marks] When we studied this example in lecture, we had 7; = 1, in which
case (1,0) is the sole stable equilibrium. Reducing ~;, which corresponds
to removing the species that would otherwise win the battle of competitive
exclusion, stabilises coexistence.



B5.

Most of my old exams include some question about chemical reaction systems

and we study them both in lecture and in problem sets, but this example should be
new to the students.

(a)

(c)

[4 marks] The stoichiometric matrix N has one row for each chemical species
and one column for each reaction. The entry N;; is then the number of
molecules of species ¢ produced when reaction j occurs: if the reaction con-
sumes species i—if species ¢ appears on the left-hand side of the reaction—this
number may be negative. If we arrange the reactants in the order

{DaomDﬁ,BaDa/%AaB}

and the reactions in the order {ky, ko, k3, k_3} (where k; indicates the reaction
with rate constant k;) the stoichiometric matrix is

10 0 0

0O 1 0 O

N = 0 0 1 -1
-2 0 -1 1

0 -2 -1 1

Of course, other orderings on the reactions and reactants will give rise to
permuted forms of N, any one of which will be correct if explained clearly.

[5 marks] The desired conserved quantities are
2D, + Daﬁ + A

and 2Dgg + Dos + B.

One can find them by performing row-reduction on a copy of N that is aug-
mented at right with a copy of the identity,

1 0 0 01 00O0O 100 O0(1 00O0O
0 1 0 0j0 1 0O0O0 010 0j/01O0O0O
o o0 1 -1j00100|—1]001-1{001T020
-2 0 -1 1j]0 0010 000 0/201T1F®0
0 -2 -1 1|0 0 0 0 1 000 0|/02101

Some students may simply write down the the quantity 2D,, + Das + A
and observe that a-monomers are neither created nor destroyed and thus are
either free or tied up in dimers and provide a similar argument about the
S-monomers. These sorts of arguments are also acceptable.

[4 marks] The rank is the number of linearly independent rows, here r = 3,
and a suitable decomposition is

1 0 0
/ 0 1 0 100 0
N:LNR_[LT}NR_ 0 0 1 010 0
0 -2 0 -1 001 —1
0 —2 —1



(e)

(f)

where Npg consists of three of linearly independent rows from N. Here I've
used the first three rows, but students will receive full credit for any answer
in which Ny consists of a set of linearly independent rows from N, L has the
specified form and N = LNp.

[8 marks] The requisite ODEs may be represented conveniently using the sto-
ichiometric matrix from above. If one writes ¢, for the concentration of the
a-monomer, cg for the concentration of the S-monomer, c,, for the concen-
tration of D,, with similar expressions for the other two dimers, then

COtOé

1 0 0 0 )
cha 0 1 0 0 ’Zlig
cap | = 0 0 1 —1 h z ’
c, -2 0 -1 1 k?’ *=p
Cs 0 —2 -1 1 —3%ap

but any equivalent set of ODEs would also receive full marks.

[4 marks] The allowed states are

A B D, D.s Dgg
0 0

SN OO N
S OoON O =N
_— o = O OO
S OO N
-0 O O

where the rows correspond to states and the columns to chemical species. The
7, k-entry in the table is the number of molecules of species k when the system
is in state j.

[3 marks] The desired graph is

RO

(g) [2 marks] The reactions that form the homodimers D,, and Dgg are irre-

versible, so the state that includes two homodimers—the rightmost one in the
digraph above—is an absorbing state. Thus lim;_,o pogo(t) = 1 while for all
other states lim,_,, p;u(t) = 0.



B6. [ lecture about a few models with spatial structure, but the bulk of the course
is about systems of ODEs. The reduction in part (b) should be familiar from the
problem sets, as should much of the rest of the analysis, but the example is unseen.

The students needn’t reproduce the PDE in their answers, but it is convenient
to have it here. The system under discussion is

O = DOyt + pu(l — u?) (6.1)
with boundary conditions u(0,t) = u(L,t) = 0.

(a) [3 marks] If u(z) is a steady-state solution to Eqn. (6.1)) it is a function of
alone and hence 0,u = 0 and the PDE above becomes the ODE
d*u

_ 3
O—Dﬁnww(l—u)

with the boundary conditions u(0) = u(L) = 0.

(b) [3 marks] The desired system of ODEs is

du dv d (du d*u L 5

(¢) [4 marks] The null clines are curves on which either du/dt = 0 or dv/dt = 0.
The former are given by the horizontal line v = 0 while the latter are the union
of the vertical lines u = 0 and v = 1. Intersections of these curves represent
constant solutions (u(x),v(x)) = (u,,v,) and in this problem the only such
solutions are (uy,v,) = (0,0) and (us,v4) = (1,0). Only the first of these
matches the boundary conditions, but it’s a trivial solution.

(d) [5 marks] To be a constant of the motion for a system of ODEs like (6.2)) a
function H (u,v) should satisfy the following PDE

d

du
%H(u(x), v(x)) = %&LH—F

dv

T OH = 0. (6.3)

For the proposed function we thus need to compute
OuH = % [2u — 2u'] = (%) u(1l — u?) and  0,H = v.
Putting these into the PDE in Eqn. (6.3)) produces

Z—Z&LH + Z—;@vﬂ = v [(%) u(l — u3)} + [— <%> u(l — u3)] v
=0

which establishes that H(u,v) is indeed a constant of the motion.



(e) [6 marks] The critical points of the function H(u,v) are places where both
O,H and 0,H vanish. Thus we want

OH=0=u(l—-u*)=0 and O0,H=0=0v=0.
The only such points are (0,0) and (1,0). The Hessain of H is

OuH 0,H]  [1—4ud 0
OpH OpH | ~ 0o 1]

Evaluating this at the critical points leads to the conclusions that (0,0) is a
local minimum while (1,0) is a saddle. This, in turn, implies that the contour
map looks like this.

06F

H/////Q>W

-061

1.0 1.5

Students needn’t provide the same level of detail for full marks.

(f) [4 marks] Solutions to the ODE from part (a) or, equivalently, to the system
in part (b), appear on the contour map as curves that begin on the positive v
axis (which is the set v = 0 with v = du/dx > 0) and then arc through the
region u > 0 before finishing on the negative v axis (which is the set v = 0 with
v = du/dzx < 0). There is only a single curve that corresponds to a domain of
a given length.



MATH36022 Solutions: 2017 Exam 2016

SECTION A

The material in this section is considered ‘core’ and is essentially all bookwork - upto the specific
choice of f(z) in Al, the choice of £ and m in A2(b), and the choice of interval for the quadrature
scheme in A4 (in class, we did [—1,1] - so the equations are now slightly more complicated).

Al.

A2.

The leading term of T),41(x) is 272" so for n = 2, it is 4a3. 1

The extremal values of T5(z) in [—1, 1] are attained at

T; = COS (l;:), 1=0,1,2,3

and we have T3(xg) = T5(1) = +1, Ts(z2) = T3(1/2) = —1, T3(x3) = T3(—1/2) = +1 and
T3(xz3) = T3(—1) = —1 (the sign oscillates) 2

The polynomial p,(z) of degree < n is a best Lo, approximation to f € C[—1,1] if and only if
3 at least n + 2 points xg, 21, ...,Tpt1, With —1 < 2p < 21 < - < Zpy1 < 1, such that

|f(xi) = pn(zi)| = | f — Pnlloos 1=0n+1

and
f(@i) — pn(x;) = _(f(xi—f—l) —pn($i+1)), 1=0:n.

The best approximation from the set of polynomials of degree n < 2 is

3 3
pa(x) = f(z) — ZTg(x) =1—22% 4323 — ZTg(x).
Since the leading term of 73(x) is 423, there is no 2% term in py(z). To see ps is a best approxi-
mation, note that f(z) — pa(z) = 2T5(x). We know that || f — p2 [lo= %3 and this is achieved
at the four points xg, x1, x9, z3 found in part (a). Since the extremal error alternates in sign, the

conditions of the Chebyshev Equioscillation Theorem are satisfied by po. 4

(a) We require that f(z) — rgm(z) = O(z¥+™+1), or equivalently that the coefficients in front of

the terms 1,2, 22, ..., 2" in the expansion of f(2)qrm(z) — prm () are zero. 2
(b) Rearranging, we have
(z) x z+22/6
r3\t) = z/2 = :
L+ 1557 L+ 22/3

The Taylor series expansion of f(x) = log(1 + z) about z =0 is

2 3 4

¥ oz
f(m)—m—?—i-?—Z%—...
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A3.

A4

We see that 73(x) is the ratio of a quadratic polynomial poi(z) = = + 22/6 and the linear
polynomial go; = 1+ 2z /3, with ¢21(0) = 1. We also have

2 3
f()ga1(z) — pa1(x) = (a: - % + % + O(x4)) (1+22/3) — (x + 2%/6)
=z +22%/3 —2%/2—223/6 + 23/3 4+ O(a?) — 2 — 2% /6
= O(z).
Hence r3(z) is the [2/1] Padé approximant, as claimed. 5

(a) To make the rule exact for polynomials of degree up to n —1 we replace f(z) by p,—1(x), the
polynomial of degree n — 1 or less that interpolates f(x) at the nodes. Then, expressing p,_1(x)
in its Lagrange interpolating form, we have (with f; = pp—1(z;))

n

/abw(ﬂc)Pnl(x) dr = /abw(l‘) glez(a:) dr = Z (/abw(x)lz(x) dx) fi,

i=1

where [;(z) satisfies [;(x;) = d;;. This shows that we should take

w; = /ab w(z)l;(x) dx.

(b) To make the rule exact for all polynomials of degree < 2n — 1, we choose the nodes to be the
roots of the polynomials ¢, (z) drawn from the family of polynomials that are orthgonal with

respect to w(x) on the interval [a, b]. 2

We have
fl@) [ 1(f) Ga(f)

1 1 wy + wa (1)
T 1/2  wiz; +waze  (2)
2?2 | 1/3  wia? +wer3  (3)
23 | 1/4  wird +wexd  (4)

3
Let ¢o(7) = (x — 21)(x — 22) = 2% + ax + b. Then the linear combination (3) + a(2) + b(1) gives

1
S+ b= W) +wad(rs) =0

Similarly, (4) + a(3) + b(2) gives § + & + ba = wiz1d(21) + wazad(x2) = 0.

Combining these two equations (eliminate b) gives a = —1 and hence b = 1/6. Thus, ¢(z) =
x? —x + 1/6 and the roots are:

11 11
— 42173 — - _2/1/3.
=gt pVIE =g -Vl
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Ab.

5

To find the weights, use the first equation to give wo = 1 — w; and then the second equation

gives
1 1 1
5 :w1(x1 —x2)+$2:w1\/1/3+§ — 5\/ 1/3

Hence, w; = 1/2 and wy = 1/2. 2
[Note - if students repeat the more familiar calculation associated with the interval [—1, 1] and
then use an appropriate mapping from [—1, 1] to [0, 1] to obtain the correct nodes then I will
accept. I will mark generously - I suspect many students will get in a mess with solving the four
equations].

To derive the ¢-step A-B method, we replace the integrand in

Tn+1

y(ns1) = y(zn) + / f(a y(@)) de,

Tn

by the polynomial p(z) of degree ¢ — 1 which interpolates f at the £ points x,, Xn—1, ..., Tpi1—s-
Similarly, to derive the ¢-step A—M method, we replace the integrand by the polynomial p(x) of

degree ¢ which interpolates f at the ¢+ 1 values xp41, Zn, Tn—1,-- ., Tptri—¢- 2

The Adams-Bashforth method is explicit (has by = 1) and has order ¢. The Adams-Moulton
method is implicit but has order ¢ 4+ 1. Hence the A-B methods are easier to implement but
less accurate; the A-M methods are harder to implement (as a nonlinear equation needs to be
solved for y,+1) but have better accuracy.
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SECTION B

B6. This is all bookwork. Parts (a),(c) and (d) should be accessible to all students (pass level marks).
Strong hints have been given about how to approach part (b) so all students should be able to
start - even if they can’t complete it.

(a)

We have || f

2wi= (f:w(a:)f(x)de) where w(z) is non-negative and continuous on

(a,b) with f: w(x)dz > 0. 2
We say g is a best Lo,, approximation to f from the set G if

| f—g

Q»WSH f —h HQ,’LU) Vh € G. 1

Since ¢y = 1, we have

(91, 90),, = (& — @0) o, ¢o),, = (2P0, Do), — 0 (D0, Do), =0

(by the definition of ayg). 2

We use this first result as the base case. If we assume the stated assertion is true for (up
to) n, we now need to show that

(Pny1, Gi)y, =0 fori=0,1,...,n.

For i = n, we have

<¢n+17 ¢n>w = <x¢m ¢n>w — Qp <¢n> ¢n>w — Bn <¢n—1a ¢n>w =0,

by definition of «, and the inductive assumption. Similarly, for ¢ =n — 1,

<¢n+17 ¢n—l>w = <.%'¢n, ¢n—1>w — Qp <¢n: ¢n—1>w - 571 <¢n—17 ¢n—l>w = 07

by definition of 3, and the inductive assumption. 4

For i = 0: n — 2, using the three-term recurrence and the inductive assumption gives

<¢n+17 ¢z>w = <33¢n7 ¢z>w - an<¢na ¢l>w - Bn<¢n71a ¢z>w
= <¢na $¢l>w
= (Pn, Piy1 + id; + Bidi—1)w =0

Note that if ¢ = 0 we should adjust the last line to read (¢n, ¢1 + @odo)w = 0. Hence the

result is proved by induction. 441

The best Lo, approximation of this form is found by solving the normal equations Ac = f
(for the coefficients ¢ = [co, ..., c,]T) where

Ai,j:<¢i7¢j>w7 fj:<f7¢]>w7 iuj:0717"‘7n'
When the polynomials are orthogonal, the matrix A is diagonal and the system is very easy
to solve. 242
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(d) (We only met three examples in class - will accept others if they know them). If w(z) = 1,
we need Legendre polynomials, with w(z) = 1/4/1 — 22, we need Chebyshev polynomials,

and if w(z) = e~ we need Hermite polynomials (any two). 2

B7. This is all bookwork. Part (c) is taken from an examples sheet and parts (a) and (b) are from
the lecture notes. (b) and (c) should be accessible to all students.

(a) We need the mean value for sums which says: Let g(x) be continuous on [a, b], let z1,...,z, €
[a,b], and let wy, ..., w, all be of the same sign. Then

Zwig($i) =9(§) sz’ for some ¢ € (a,b).
i=1 =1

For the error (using the given result on one interval), we have

n—1 n—1

Tit1 h h3
ERT(f) = Z |:/ f(l‘) dx — E(fz + fi+1):| = Z 7ﬁf”(6i)’ 91 S (Ii,ﬂfiJrl),
i=0 -V T i=0
:—iﬂwm, 0 € (xg,7,) = (a,b), using M.V.T, with g = f” and w; = —h3/12
= —hQ(ﬁ2 °) (9 (since nh =b— a).

(b) Doubling the number of intervals corresponds to reducing h by a factor of 2. So, if we
replace h by h/2 in the asymptotic formula, we get

h? ht
I(f) = T(h/2) = ay— + as— + O(h®).
4 16
The new scheme T'(h/2) still has an error that is O(h?) but the error is reduced by a factor
of four. 3
We have i
AI(f) — AT(h/2) = agh® + as -+ O(h%)
and

I(f) = T(h) = agh® + ash* + O(hS).

Hence,

_ asht
I(f) - <4T(h/2; T(h)> _ o).

4
Hence the approximation %T(h/ 2) — 1T(h) gives an error that is O(h*). 4
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(c) The Romberg scheme is best described in terms of the following table.

— error X h?
T
To1 1o
h halved J/ T31 T32 T33
Ty Tao Tiz Ty

Starting with 777 (the standard Trapezium rule with ~ =1 (1 interval)), the first column
contains repeated trapezium rules with the step halved each time. The error for this se-
quence is O(h?) (see part (a)). Each pair of approximations in the first column can be
combined to obtain a new scheme in the second column whose error is O(h*) (as in part

(b)). These schemes can be combined to give new schemes whose error is O(h%) etc. | 2

Starting at 777 we double the number of intervals to form T»; and then use extrapola-
tion to form Ths. We then compute T3; and again use extrapolation with T5; to form
T35 ... The table is computed row by row: 111,151,159, 151,132,133, .... We can stop when

|Thr — Tr—1,k—1| < € for the desired tolerance e. 2

B8. Parts (a) and (b) are bookwork (from the lecture notes) and were set as questions on the 2015
exam. Parts (c) and (d), however, are taken from an examples sheet - but phrased differently.
On the examples sheet, the method was presented as a predictor-corrector method. Here, it is
presented as an RK method.

(a) Substituting y(xz,) for y, and subtracting the right-hand side from the left-hand side gives:

T(h) = y($n+1) —y(@n) — hb1 f(xn, y(xn)) — hba f(xn + c2h, y(zn) + hao1 f(Tn, y(xn)))

Noting that f(xn,y(x,)) = y'(z,) then gives

7(h) = y(@ny1) — y(xn) — hbry' (zn) — hba f (0 + coh, y(zn) + hazy (x,)). | 1

(b) For an order two method, we need that 7(h) is O(h3). Using a Taylor series expansion for
y(zp4+1) and the hint gives

2
Y(nsn) = ylan) + by (on) + o/ () + O

W (of  of
= y(on) + /) + g (L4 5E1) Lo + 00
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Next, use a Taylor series in two dimensions:
0
(e + eah y(en) + haony (2a) = 9/ (2a) + eoh 9 (2, y(a2)

+ hany/(xn)gz(xnv y($n)) + O(hQ)

Substituting both expansions into the expression for 7(h) in part (b) gives

2
700 = )+ 15/ @) + 5 (G + L1 ) lanatenn + O] = o) = i/ (22)

—hbsy <y/(:cn) + czhg‘;(mn, y(zn)) + hagly’(xn)g';(xn, y(zn)) + O(h2)> )

Rearranging then gives

7(h) = h (1 = b1 — by) 9/ (x,) + h? ( - b262> gi(xn, y(zy))

1 0
+ h? (2 - b2a12> <673J/tf> ‘(l‘n,y(-In)) +O(h?)

Hence, we need by + be = 1, baag; = 1/2 and baco = 1/2. 4

(c) With the stated coefficients, the method is

Yntl = Yn + hf(xn-i-la Yn + hf(xna yn))

1

This is equivalent to using the (explicit) Euler method to ‘predict’ the value of y,4+1 required
by the implicit Euler method.

Predict (Explicit Euler): 97(10-1)-1 =yn+ hfn
0 0
Evaluate: féle = f(znt1, 3/2421)

Correct (Implicit Euler): yfll_zl =Y.+ h fy(fgl

(d) If y' = Ay, then applying the method gives
Ynt1 = Yn + BA(Yn + Mhyn) = (1+ hA + (AA)?)yn.
Thus |yn+1| < |yn| (the method is absolutely stable) if [p(Ah)| < 1 where
p(AR) =1+ Ah+ (Ah)?.
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Note for the External examiners for the Actuarial programmes: The examination
paper addresses comprehensively the concepts specified in the document Subject C'T6, Sta-
tistical Methods, Core Technical Syllabus (I have the 2010 edition), more specifically part
(viii) Define and apply the main concepts underlying the analysis of time series models.

The three papers have identical A and B sections. Section C is identical for the MSc and
level four papers.

1 of 12 P.T.O.
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SECTION A
Answer ALL four questions

Al.
A graph of a monthly time series, {x,}, is shown below. Give concise answers to the following
questions.

a) There is strong seasonality with period 1 year (12 months). There is also a slow trend.

b) Differencing can be expected to remove the trend. (Though a second differencing may
be needed if the trend turns out to be of a quadratic type.)

¢) Seasonal differencing with s = 12 should remove the seasonal trend which seems pretty
stable.

d) For example, if the variability is larger for larger values of the series I might consider
log-transformation. This seems not to be necessary for this series.
Another reason might be: Log-transformation is often used for financial data where
“returns” are of primary interest.

2 of 12 P.T.O.

[2 marks|
2 marks|

[2 marks]

[2 marks]

Qu. Total

& marks
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A2. There are various ways to write down the requested forms, I give only the “major”
ones.

a)
(1+0.1B —0.72B*) X, = (1 — 0.5B"?)g,

b) Taking expectation on both sides of the equation above and using stationarity we get
pw—0.3pu=4.2.
Hence, = 4.2/0.7 = 6. The required mean-corrected form is

Xy —p=03(Xs1 —p) e+ 0.7, diff. eq. form
(1-0.3B)(X; — ) = (1+0.7B)ey operator form

¢) The model for {Y;} is

(1-B%)Y; = (1-0.5B)(1+0.1B?)e,.

d) (1-B)(1+B+B*+B?) and (1 — B?)(1+ B?).

3 of 12 P.T.O.

[2 marks|

[2 marks]

[2 marks]
[2 marks]

Qu. Total

8 marks
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A3.
A time series is analysed with R and a model is fit with the arima function. Here is a
summary of the fitted model.

a)
(]_ — 04016B)Xt = & or Xt — 04016Xt_1 = &¢.

b) 6% = 1.798.
c) It is statistically significant since its standard error is more than 5 time smaller than

the estimate. (Other appropriate justifications are acceptable, e.g. “.. since the
approximate 95% CI is 0.4016 £ 1.96 % 0.0765 doesn’t contain zero

d) 1) on visual inspection the residuals seem OK although on second thought (after looking
at acf) they seem to show some periodicity.
ii) All residual autocorrelations are small except the one at lag 12 (1 year). This suggests
that seasonality has not been accounted for completely by the model.
iii) The p-values of the Ljung-Box statistic from lag 12 on show definte lack of fit at
the 5% level and are marginally not significant for smaller lags.
So, there is strong evidence for lack of fit.

e) Since only the lag 12 residual autocorrelation seems significant, I would fit a model with
a seasonal term, (1 + 6B'?), added to the original model. T expect this to be a good
model but I will explore its diagnostics as well.

4 of 12 P.T.O.

[1 mark]
(0.5 marks]

[1 mark]

[0.5+1+2 mark

[2 marks|

Qu. Total

& marks
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A4.

a) Both plots show that the residuals are not white noise and therefore the fit is not good.
The acf decays gradually may be suggesting a low order AR model for the residuals.
The pacf clearly indicates an AR(2) model for the residuals since only the first 2 partial
autocorrelations seem significantly different from zero.

b) The model originally fitted is ARIMA(0,1,0)(0,1,1);2, i.e.
(1-B)(1-B?)X,=(1+60B%)r,

The above analysis suggest a model (1—¢;B—@B?)r; = ;. Combining the two models
gives
(1-B)(1-B"?)(1 —¢:B— $B*)X;t = (1+60B"%)e,

i.e. an ARIMA(2,1,0)(0,1,1)12 model.

c¢) The standard errors of all parameters in Model 1 are small which coupled with what is
said about the residual diagnostics suggests a very good fit.
Model 2 is clearly overfitted—the standard errors of most parameters are (very) large,
e.g. the s.e. of arl is about 2.5 times the value of the estimated parameter.

The AIC statistic for Model 1 is also smaller.
Model 1 is clear winner.

5of 12 P.T.O.

[4 marks]

[2 marks]

2 marks|

Qu. Total

8 marks
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SECTION B
Answer 2 of the 3 questions
B5.
a)
Xt = 0.8Xt_12 + &+ 0.55,5_1,
(Other correct ways to write this down are equally good.) [2 marks]
b) s =12, ¢ = 1, p, = 1, the remaining are zeroes. [2 marks]
c¢) The root of 14 0.5z is —2 whose modulus is greater than 1, hence invertible. [2 marks|
d) We have
(1—0.82'%)" Z 0.8F 212,
Hence,
(1—0.82")"1(14+0.52) = (1 — 0.82"%)" (1 +0.52)
— (Zo 821 4 0. 5z20 8tz 12k>
— (io 8k 12k+20 5 % 0 8k: 12k+1> )
Hence,

X, =(1-0.82")"1(14+0.5B)¢,

- Z 0.8"B'?k¢, + Z 0.5 x 0.88"B1%+1g,

=0 =0 [4 marks]

e) The coefficients are 1, 0.5, 0.8 at &4, £,_1, €;_12, respectively. The coefficients at g;_; for
1=2,3,...,11 are all zeroes. [4 marks]

f) i) We have
X1 = 0.8Xy 11 + €441 + 0.5
Xit12 = 0.8X; + 4412 + 0.564411
Xit13 = 0.8X 11 + €413 + 0.5 412

Using the basic properties of predictors or directly the basic forecasting theorem
we get

Xii1 = 0.8X,_11 + 0.5
Xip12 = 0.8X,
Xip1s = 0.8X, 1y
— 0.8(0.8X,_11 + 0.52,)
=0.64X;_1; +0.4g

6 of 12 P.T.O.
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[4 marks]
ii) Subtracting the predictors from the corresponding predicted values and calculating
the variances (alternatively, using the general formula) we obtain
o?=1for h=1, 0%(1+0.5%) = 1.25 for h = 12, and for h = 12:
Var(Xy 113 — Xi13) = 02(12 + 0.52 4 0.8?)
=1+402540"+---40>+0.64
=1.89
[6 marks|
Qu.Total
24 marks

7of 12 P.T.O.



MATH48032

B6. Let {X;} be a stationary time series with E X; = 0.
a) For any integer j > 1 consider the best linear predictor of X, in terms of X;_q,..., X;_;.

Denote by v; the variance of the corresponding prediction error, and by ¢§j ), e ,gz5§-j )
the coefficients at X;_1,..., X;_;, respectively.

i) Bookwork.
ii) Bookwork.
)

iii) partial autocorrelations. [8+24-2 marks|
b) i) X; =08X;1+¢& — No, 82 =0. [1 mark]

i) Xy = —0.8X; 1 +¢& — No, S =0. [1 mark]

iii) Xy = ¢ +0.85;_1 — No, 51 = p1 # 0.8. [2 marks|

iv) Xy = ¢ —0.86,-1 — No, 01 = p1 # 0.8. [2 marks|

v) Xy = X1 — 0.5X 5+ — No, 5y # 0.5. [2 marks]

Vl) Xt = Xt—l — O.25Xt_2 + & — Yes.
Indeed, By = —.25. From the Yule-Walker equations for j = 2 we get

P1 = 1-— 025p1
P2 = P1 — 0.25.

We do not even need the second one since from the 1st equation we get p; =
1/1.25 = 0.8. Since f; = p1, we get 51 = p; = 0.8, as required for affirmative

answer. 2 marks|

vii) random walk — No, not stationary. [2 marks]
Qu. Total

24 marks

8 of 12 P.T.O.
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B7. To answer this question a students needs to understand the definition of an ARMA
model (the definition a gave postulates causality).

a) In operator form the model is
(1-B+iB*)X, = (1+iB)s, (1)
The root of the polynomial 1 + %z is —2, outside the unit circle, hence the process is
invertible. [4 marks]

b) Multiply equation (1) by X;_; and take expected values. Using causality, for k > 2 we
get
Ve — Vh—1 + 372 = 0.
Let 0% = Var(g;). Multiplying equation (1) by &; and taking expected values we get
Rx.(0) = o2
Using this and multiplying (as above) by X;_j but with £ = 0,1 we get
Yo=m— 3%+ + 1Rx.(1)
In=70+30"
So, the system is
Yo=m— 372+ 14+ 3Rx(1)
%71 =" + %
Y= +371=0
Yo —1+ 37 =0.
[8 marks|
c¢) For k > 2 we get
Rx.(k) — Rxc(k — 1) + Rx.(k — 2) = 0.
So, for k > 2, Rx.(k) may be computed recursively by the formula
Ruce(k) = Rx.(k — 1) — LRx.(k — 2),

using Rx.(0) = 0? =1 and Rx.(1) = 3/2 as initial values. [5 marks]
Causality implies that Rx.(k) = 0 for negative k. 1 mark]
Plug the given values in the expressions above to get Rx.(0) and Rx.(1). To get Rx.(2),

multiply equation (1) by ;2 and take expected value to get

RXE(Z) = RXE(l) — %RX5<O) = RXE(l) — l0’2,

2
plug in the previously obtained values to get the final result.
d) The fitted model is

Xy =4.3474 4+ 0.9272X, 1 — 0.3879X;_5 + & + 0.6286¢;_1,
The mean corrected form is:
Xy = p+0.9272(X; 1 — p) — 0.3879(X; 5 — p) + &4 + 0.6286¢4_
= pu—0.9272p + 0.3879u + 0.9272X; 1 — 0.3879X;_5 + ¢ + 0.6286¢;_1.

Hence, 4.3474 = p— 0.92724 + 0.3879p and so p = 4.3474/(1 —0.9272 + 0.3879) = 9.43
[2 marks]

Qu. Total
9 of 12 P.T.0. 24 marks
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SECTION C
Answer ALL questions

RB. g
a) 1) No, the mean of the returns is not zero. The 95% confidence interval is [0.00039, 0.0055].

ii) The test statistic is ¢ = —0.119/1/6/1945 = —2.14 with a p value 0.032. Thus, the
log returns are skewed to the left.

iii) The test statistic is ¢ = 2.705/4/24/1945 = 24.35, which is highly significant.
Thus, the log returns have heavy tails.

iv) No, the log returns have no serial correlations. The Ljung-Box statistics give
(Q(10) = 12.96 with a p value 0.23.

v) Yes, because the Ljung-Box statistics of the squared deviations from the mean give
()(10) = 338.96 with a p value close to zero.

[5*2 marks]
b) Yes, the model is adequate because the model checking statistics all have high p values.
The fitted model is
Ty = 0.0017 + Q
ay = Ot€y, € ~ UG43
o7 = 0.00012 + 0.0896a?_, + 0.87507 _,
where ¢} denotes standardized Student-t distribution with v degrees of freedom. [3 marks|
c) 1) Yes, the model is adequate as all model checking statistics have high p values. The
fitted model is
ry = 0.0015 + Q¢
Gt = Ot€y, €r ~ T6.41,0.983
o? = 0.00012 + 0.0892a? | + 0.87602 ,
where 7} . denotes standardized Student-t distribution with v degrees of freedom
and skew parameter &. [3 marks|
ii) The test statistic is ¢ = (0.983 — 1)/0.0295 = —0.58 with a p value 0.56. The null
hypothesis of £ = 1 cannot be rejected. [2 marks]
d) The ARMA(0,0)+GARCH(1,1) model with Student-t innovations. The model has a
smaller AIC criterion —3.0594, whereas that of the skew innovation is -3.0586. This is
consistent with the testing result for . [2 marks]
Qu. Total
20 marks
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.
a) We have

X1 =(14+0) Xy —0Xi1 + e
Xevn =14+ 0)Xein1 — 0 Xiin2 + tan

i) Setting ¢ = T' = 100 and using the observed values 190 = 3 and x99 = 1 we get

XT—H\T,T—I,... =1+¢)rr —pxpys=xp+ (xp —2p_1)p =3+ (3 —1)¢p
=34 2¢

[1 mark]
ii) Similarly, setting h = 2, t = T'+ h = 102 and using the one-step predictor found
above, we get

XT+2|T,T71,.,. =(1+ ¢)XT+1|T,T71,... - CbXT\T,Tfl,... =14+ 9)(3+2¢) -3¢
=3+ 2¢ + 2¢°

[2 marks|
i) f(h) = (14 0)f(h — 1) — 6f(h —2). 2 marks]
iv) The solution of this equation is of the form f(h) = a + b¢", where a and b can
be determined by equating the formulae for f(1) and f(2) (the 1-step and 2-step
predictions found above) to a + b¢! and a + bg?, respectively,

a+bp=342¢
a+ bg* =3+ 2¢ + 2¢*

and solving the resulting system of equations. For example, substracting the first
equation from the second we get

b (¢ — 1) = 267,

Hence,
2 2
ol —1) o-1

and

B B 20, 20
a=3+2¢0—bp=3+(2 —¢_1)¢_3 P

So,

L 2 %
J)=3- =g+ e

[4 marks]
2

v) 3 — 31 [1 mark]
b) i) Yes, the augmented Dickey-Fuller tests fail to reject the null hypothesis of unit-root
time series. [4 marks]

11 of 12 P.T.O.
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ii) Yes,the co-integration test shows that the two unemployment rate series are co-
integrated.
A co-integrating vector is (1,—18.377) and a cointegrating relation is DM —
18.377CD. [6 marks]

Qu. Total
20 marks

END OF EXAMINATION PAPER
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MATH3/4/68052 Solutions

Al

(a) The mean and variance of the distribution are given by [Bookwork]
E[Y]=0/(0), Var{Y} =0"(6)a(¢). [2]
(b) For the geometric distribution,

ylog(1—p) —log 5

fly) = (1 —p)¥p=exp (

+ 0) € exponential family

1
with 0 = log(1 = p), ¢ = 1, a(¢) = ¢, b(6) = —logp = —log(1 — e), c(y, ) = 0. 4
(¢) Using the formulas in part (a),
0 _
E[Y] = ¥(6) = —r(—¢) = 155 = 152,
) 4 ¥ (1—e?)—ef (—e? o0 _
Var{Y} = b”(@)a(d)) = (1i7) x1= u (1266)2( ) = d—chz — 1p2p~ [2]
(d) The three components of a generalised linear model are [Bookwork]

(i) the error distribution, which is the distribution of the response variable;
(ii) the linear predictor, which is a linear combination of the explanatory variables, and

(iii) the link function, which is a function of the mean response.
The canonical link is the same function of u as 6 is (a function of u). [4]

(e) For the geometric distribution, u = —p ,thus p= 7 and 1 —p = . Then

6 =log(1 — p) = log (ﬁ) .

Therefore g(u) = log (#ﬂ) is the canonical link. 2]

(f) The log-likelihood function is given by

(B,0) = (yieiaz (;;wi) + c(yi,¢)) .

i=1

Thus (using the chain rule) the Fisher scores are

ov 1 « 00;
— = =V ()2 G=1,...,p.

When the canonical link is used, g(u;) = 6; = z; B, SO 85 = a%j%ré = x;j.

From Property 1, /(6;) = p;. Therefore




A2 (a) Binomial response probit regression model with intercept:
y; = n;m; + &; ~ B(n;, m;) independent,
O~ Y(m) = Po+ Prxi, i=1,...,n,
where ! is the inverse CDF or quantile function of N(0,1).
(b) (i) W is a diagonal matrix. The diagonal elements are

v
V(mi)g' ()2

where V(m;) = var(y;)/a(¢) = nm (1 — m;) /1 = nymi(1 — m;),

w; = i:l,...,n,

’ d Y dﬂ'i 1—71'1‘ 1_7Ti_7ri><(_1) 1 1
9 (i) = log = : 5 e —
dﬂ'i ].77'(1' dp,l T (1771'1) Tn; ’Ill"]Ti(].*’iTi)
Therefore w; = n;m; (1 —m;), i=1,...,n.

(ii) The Fisher information matrix is

XTwx
B 1 ... 1
- zl DRI x/'L

= 1

i=1

n

1 xX;

= ;nﬂrl(l —71'1') < ; CIJ% > .

1(8)

w1 0 1 x

[4]

(iii) I(B) can be used to find the standard errors of é It is done by inverting I (é) and taking square

roots of the diagonal elements.

(c) (i) The mean vector of £ is X3 and the variance-covariance matrix is W~".

(ii) The updating equation is
B — (X' WHE X)) X' WR ™k =0,1,2,...,

where é(k) and W) are calculated using Q(k).

The role of £ is to be used as working response in a weighted least squares regression.

[3]

3]



B1

(a) Putting the Gamma density in exponential family form,

fly; auA) = exp{-Ay+alogh+ (a«—1)logy —logT(a)}
— 1
= exp {y( )\/a)l—/l—aog(/\/a) +aloga+ (a—1)logy — log F(a)} .
The natural parameter is § = 7%' (3]

(b) From b(f) = —log(A/a) = —log(—#), we have pu = b'(0) = —2; x (—1) = —1/6 = o/ .

"

The variance function is V(u) = b (0) = (—1/6)" = 1/6% = p2. [4]

(c) (1)

(i)

(iii)

From (b), 8 = —1/u. Thus the canonical link is g(u) = —1/p. The reciprocal link is just as good

as (or equivalent to) the canonical link. [2]
The denominator a(¢) = 1/« is estimated by the deviance divided by its df=35-3, which gives
1/6 = 44.28/32 and thus & = 32/44.28 = 0.7227. 4]
No, the deviance cannot be used to check the adequacy of the model. This is because its distribution
depends on the unknown parameter a. 2]

When the 22 term is removed, the change in deviance is 48.72 — 44.28 = 4.44 on 1 df. The model

with 22 in it has deviance 44.28 on 32 df. The F-ratio is

4.44/1

— 391
masj3 0

which is less than the critical value Fy o5, 1,32 > 4.17 (from table). Thus we do not reject Hy : B2 =

0 at the 5% level, and the model without z? is not significantly worse. [5]



B2 (a) The model fitl is not saturated, because its deviance 19.29 is not zero. [2]

The saturated model has both Insecticide and Ldosage as factors:

yij ~ B(n,m;;) independent,

log 17:;{ :u+az+ﬂj+’7lj7 i= 172737j =1,2,...,6,
with constraints a; = 81 = Zj Y5 = ;Y1 =0. [4]

(b) Fitl has deviance 19.29 on 12 df, which is less than the 5% upper tail critical value x§ o5, 1o = 21.03.

This is not significant evidence at 5%. Thus the model is adequate as far as deviance is concerned. [4]

(¢) When fitl becomes fit2, the change in deviance is 3.39 on 2 df, which is not significant at 5% (P-

value= 0.18 > 0.05). Yes, fitl can be simplified without causing a sig. change in deviance. [4]

(d) Calculating fitted probabilities of being killed by a 3mg dosage:

1
A= —4.4541 +2.6938 x 1.0986 = —1447, 7 = 5 = 0.1832
1
B: n=-1.4947+0.6144 = —0.8803, 7= m =0.2931
1
C: = —14947+3.0314 = 15367, 7 = ;755 = 0.8230

(e) Calculating LD50:

4.4541
A: LD50 = —— | =5.2
LD50 = exp <2.6938) 5.23 mg
4.4541 — 0.6144
4.4541 — 3.0314
: LD50 = —_— | =1
C 50 = exp ( 5 6938 ) 70 mg



B3 (a) The multinomial distribution is given by the probability function [Bookwork]

|
n Y11 Yy1J

TS R OV A

P(Yir =y, Yy =y1s) = —
Y- yYrg-

where 7;; are cell probabilities with }_, m;; = 1.

(b) For independent Y;; ~ Pois(nm;;), Y. = Y11 +--- + Y5 ~ Pois(n).

PYi =y11,--, Yig = y1J)
P(Y.=n)
[1;;(nmij)¥s exp(—nmi;) /yis!
n™exp(—n)/n!

n! g
S — ﬂ'yy,
I, ot L7
17 JU

J* ij

PYii=wyi1,...,.Yig=yrglY.. =n) =

when y11 + - -+ + yr; = n. Thus difference between the Poisson log-likelihood and the multinomial is
log(n™ exp(—n)/n!), which is a constant.

[5]

(¢) (i) The additive model has deviance 10.205 on 4 df, which is significant at the 5% sig. level as it is

greater than X(Q).05; 4 = 9.488. Thus significance evidence to reject independence between vehicle

type and mechanical condition. [4]

(ii) Mechanical condition cannot be removed from the model because of its significant interaction with

vehicle type. One can also say that because of the lack of fit of the additive model — it cannot be

simplified further. [4]

(iii) When vehicle age is added, the deviance becomes 5.384 on 3 df. This is not significant at 5% since

it is less than X%.os; 3 = 7.81. Thus sufficient improvement for model to provide adequate fit. [4]



A3 (MATH4/68052 only)

(a) Definitions: [Bookwork]
S(t)=P(T >t), t>0.

h(t) = lims_,q+ , > 0.

P(Tgt—:s-(SlT>t)
Calculation of h(t) from S(t): h(t) = —%.
Calculation of S(t) from h(t): S(t) = exp (f fg h(t)dt). 4]
(b) (i) f(t) =32, t>0.
F(t)= )32 P dt = —e [ =1 -, t > 0.
Sty=1-F(t)=e", t>0. 2]
(i) h(t) = f(t)/S(t) = 3t%, t > 0.

Quadratic curve when plotted against t. (3]

(¢) A semi-parametric model for the hazard function is
h(t) = ho(t)e’”,

where ho(t) is an unspecified hazard function and § is a constant. The nonparametric part ho(t)
represents the baseline corresponding to z = 0. The implication of this model is proportional hazards,
i.e. h(t; z)/h(t; ') = e?@=*") not dependent on t. [3+2+3]
(d) Let t; <ty <...<ty, be observed lifetimes, and i; be the subject who failed at ¢;. [Bookwork]

The partial likelihood is defined as

P(1121177Inzzn7 xl,...,xn)

= P(Il = ’Ll)P(IQ = i2|I1 = Zl)P(Ig = i3|12 = 7:2,_[1 = Zl) . P(In = inl-[nfl = infl,. .. ,Il = Zl)

where the conditional probability at ¢; is

exp(z;, B)

P = if Ly =5 g, Ty =) = 870
(] ]|J 1 j—1 1 1) Zkzjexp(x;kﬁ)



C1 (MATH4/68052 only)

(a) Calculating Kaplan-Meier estimate of the survival function:

Att=5r7=10,d=1,S(t)=1— & =09

Att=7,7r=9,d=1,51t)=09x (1-%)=0.8
Att=8,7r=8d=1 9t =08x(1—%)=07
Att=11,7=5,d=1,S(t) =0.7x (1 - 1) =0.56

1, 0<t<5
09, 5<t<7
08, T7<t<8
St ={ 07, 8<t<ll
0.56, 11<t< 15
0.28, 15<t<16
0, 16<t

(b) 95% c. i. for log(—log S(10)):

1/2
mg—kgm7»i196(w;,+g§+@§g /|Tog(0.7)|
= —1.0309 £ 1.96 x 0.2070/0.3567 = —1.0309 £ 1.96 x 0.5804 = (—2.1685, 0.1067).

+1.96x0.5848

95% c. i. for S(10): 0.7°

(exp(—exp(0.1067)), exp(—exp(—2.1685))) = (0.3287,0.8919).

(¢) The estimated mean survival time is

1x54+09%x24+08x1+07x34+0.56x4+0.28 x1=12.22.

The estimated median survival time is 15 using the minimum ¢ such that S (t) <0.5.

(d) Nelson-Aalen estimate of H(10):

i+1+1—03361
10 9 8 '

and a 95% confidence interval for H(10) is
(—10g(0.8919), — log(0.3287)) = (e~ 21685 ¢0-1067) — (0.1143,1.1126)

using results in (b).



C2 (MATH4/68052 only)

(a) The log rank test statistic takes the value x> = 1.1 on 1 df which is not significant at 10% as P-

value= 0.303 > 0.1. Thus no significant difference between treatments A and B. [4]

(b) (i) The fitted model is Cox proportional hazards:

h(t) = ho(t) exp(0.147 x age — 0.804 x rz2),

where rz2 is an indicator for treatment B. [3]

(ii) Question is whether treatment makes a difference taking into account year when diagnosed. Answer

is No, as P-value corresponding to test statistic for rx2 is 0.2 > 0.05. 3]

0.147x5

(iii) Hazard ratio is e = 2.09 if someone is diagnosed 5 years later. [4]

(¢) From the summary of survreg,
Ao = 7110299 — 1 6210 x 1075, & =1/0.551 = 1.8149.
The fitted Weibull model is a proportional hazards model with coefficients
age: —0.0791 x (—1.8149) = 0.1436
rx2: 0.5673 x (—1.8149) = —1.0296
that are similar to those in (b). Additionally it gives h¢(t) in parametric form:

fAL()(t) = 1.8149 x 6—11.0299><1.8149 % t0'81497 t>0.

(d) Testing Hy: Scale=1 vs Hy: Scale # 1,
Log(Scale)= —0.5967, se= 0.2352, z = —0.5967/0.2352 = —2.54 is significant at 5% (P-value=

0.0112 < 0.05). Cannot reduce to exponential model. [2]
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Solutions to exam MATH39512 Actuarial Models
2 2017

General remarks MATH39512 Actuarial Models 2 is a new course unit that covers
units 5, 6 and 7 of the syllabus of CT4 of the Actuarial Profession on survival analysis
which includes in particular non-parametric, parametric and semi-parametric esti-
mation of survival times. The material covered in this course unit goes deeper than
the CT4 syllabus as, for the purpose of non-parametric estimation, an introduction
to the theory of counting processes and martingales is given. Also the concept of
frailty is treated in this course unit.
Regarding the originality level of the questions:

e Question 1 on non-parametric estimation: part (a) is new, parts (b), (c) and
(d) are fairly standard. Regarding parts (e) and (f), students have seen similar
examples (e.g. the log-rank test) but not this specific one.

e Question 2 on parametric estimation: similar questions as part (a) have been
dealt with in class but not with this particular hazard function. Part (b) has
appeared in an exercise.

e Question 3 on Cox PH model: the occurrence of left-truncation in computing
the partial likelihood is new though left-truncation has been seen in other
contexts (like with computing the K-M or N-A estimators). The one-sided test
in part (e) is new.

e Question 4 on frailty: similar examples will be covered in class but not with
this form (of the pdf) of the frailty Z.



Answer to 1

(a) The survival data consist also of censored values which are lower bounds for
the actual survival time. Hence a simple average of the given numbers would
severely underestimate the true mean of the survival time.

(b) We first find the values for 7; (the ith ordered observed genuine failure time), d;
(the observed number of failures at 7;) and r; (observed number of individuals
at risk of failing just before 7;). The values are given in the table below.
Then we can compute the Kaplan-Meier estimate S (t) at the failure times
7; using §(T1) = (1 — dy/r1) and the recursion, S\(Tl) = §(7’i_1)(1 —di/ry),
1= 2,3,4,5,6. This leads to the last column of the table below. Note that
as S(t) is a right-continuous step function, the value of S(t) for t € [r, Tis1),
i =1,2,3,4,5 is given by S(t) = S(r;), whereas S(t) = 1 for t € [0,7;) and
5 (t) = § (76) for t > 76. The plot of the Kaplan-Meier estimate is provided in
Figure 1.

7 T dz Ti S\(Tz)
19 1 11 0.909
2 20 1 8 0.79
3 25 1 7 0.682
4 28 1 6 0.568
5 32 1 4 0426
6 40 1 3 0.284



1.0

0.8

0.6

K-M estimate

0.2
|

Figure 1: Plot of the Kaplan-Meier estimate.

(c¢) The median of the survival time 7" is, by definition, any value ¢ such that
both P(T" < t) > 0.5 and P(T > t) > 0.5. Hence the median of T" is any value
t such that S(t) = 1 —P(T < t) < 0.5 and lim, S(u) = P(T" > t) > 0.5.
Using the Kaplan-Meier estimate we can estimate the median of 7' by finding
a value of t such that S(t) < 0.5 and lim,4; S(u) > 0.5. Since S(32) = 0.426
and lim,32 S(u) = 0.568, it follows that the estimate of the median of 7" is
32.

(d) We need to estimate the probability

We can estimate this probability, using the Kaplan-Meier estimate, via

S(27) - S(35)  5(25) — S(32)  0.682 —0.426 0,951
5(15) 5(9) 0.909 T

(e) It is now relevant to record from which group the individual died at a genuine
failure time 7; and how many were at risk from each group separately just

3



before time 7;. To this end, we denote by @’ the observed number of failures
from group j at time 7; and by r] the observed number of individuals from
group 7 at risk of failing just before time 7;. The table below gives the numbers
of these quantities.

i oo dlodlory oot

1 9 0 1 6 5

2 20 0 1 5 3

3 250 1 o5 2

4 281 0 5 1

5 32 0 1 3 1

6 40 1 0 3 O
Note that dj ANI and R = /. By definition of the Nelson-Aalen estima-
tor, A;( = /i dN] Hence we deduce,

43 R R
iy = / ReRM (Aa(s) = Ay(s))
0

43 43
= [ RMN? -~ RAdN?
0 0
6 6
=3 -3
=1 =1
=1-19=—18.

Similarly,

43
Vtoz/ RORY (N® + N?) = Zr (df +d’) =30+ 15+ 10+ 5+ 340 = 63.
0

Hence

|Zto/\/ Vto‘ _227

Since 2.27 > zg025 = 1.96, we reject the null hypothesis. We conclude that
there is a difference between the hazard functions of both groups.

(f) Using A fg d};{ M = fo s)ds and assuming that the null




hypothesis holds,
t ~~ ~
Z, = / R°RY (Aa(s) - Ab(s)>
0

t t
= / RYANY — / RN,
0 0

t t t
= [ Rz - [ R+ [ RR () - lo)ds
0 0 0

t t
& / RedM® — / RodM.
0 0

By the hint both {M2 : ¢t > 0} and {M? : t > 0} are martingales w.r.t.
{F; : t > 0}. The processes {R® : s > 0} and {R? : s > 0} are bounded,
adapted to the filtration {F; : t > 0} and have left-continuous sample paths
(this is because R! gives the number at risk just before time s). Then by
a lemma from the notes the stochastic integrals { f(f RbAMS : t > 0} and
{fot RAdM? : t > 0} are martingales as well. Therefore under Hy, {Z; : t > 0}
is a martingale. Since martingales have a constant (in time) mean, it follows

that E[Z,,] = E[Z,] = 0.
Answer to 2

(a) Denote by T the generic survival time with hazard function wu(¢). Since the
hazard function is u(t) = fe*, the survival function is

S(t) = exp (— /0 t Be“’sds> — exp <—§(evt - 1))

and hence the pdf of T is

Ft) = u(t)S(t) = BT exp (—%wt - 1>) .

Let L;(B,~) be the likelihood of (3, ) given the data of individual 7 only, where
the individuals are labelled 1 to 7 from left to right. For a censored observation
t;+, the likelihood by the independence of the censoring and the survival time
is L;(B,v) = Pr(T > t;)e; = S(t;)ci, where ¢; is some unimportant constant
(i.e. does not depend on /3 or 7). Similarly, for an uncensored observation
t;, the likelihood is L;(8,~) = Lik(T = t;)¢; = f(t;)ci, where again ¢; is some
unimportant constant. Then given that individuals 1, 2 and 3 fail and the

5



others are censored and that all individuals are independent, the likelihood of
all individuals combined is,

7

L(B,7) = [ [ Li(B,7) = CF(4) f(8)S(10)* = Cr(4)u(8)S(4)S(8)S(10)*,

i=1

where C' is an unimportant constant and for the last equality we used f(t) =
w(t)S(t). Hence the log-likelihood is

(B, 7) = log(L(B,7)) = log(C) +log(uu(4)) +log(1(8)) — A(4) — A(8) —2A(10),

where

Alt) = — log(S(1)) = §< )

is the cumulative hazard function. Recalling that log(u(t)) = log(5) + ~t, we
get in the end,

0(B,v) =log(C) + 2log(5) + 12y — g (€ + e 4+ 261 — 4) .

(b) From the expression for the cumulative hazard function

log(A(t+1) — A(t)) = log <§e”*t(e7 - 1)) =yt + log <§(e7 — 1)) :
We can estimate the cumulative hazard function by the Nelson-Aalen estima-
tor denoted by A\(t) Then a way for checking that the choice of the parametric
form of the hazard function is an appropriate one is to plot log(A(t+1)— A(t))
against t. If the resulting graph resembles closely a straight line, then this
gives a good indication that the hazard function is indeed of the proposed

form.

Answer to 3

(a) If a player has a left-truncated survival time (meaning that the left endpoint
s of the survival data interval (s, ] is strictly positive), then this means that
he/she already played a few matches injury-free before he/she started to be
observed as part of the study. A non-truncated survival time means that the
player just got back from an injury.



(b) The hazard function of a player with training method B is given by

pn(t) = pa(t)e”,
where p4(t) is the hazard function of a player with training method A. Since
there are no ties with the genuine failures, we can use the following formula
for the partial likelihood that one can find in the notes:

no

Lp(B) =

J=1

exp(fBx,)
ZmeRj exp(fm)’

where ng = 5 is the number of genuine failures, I;, j = 1,2, 3,4 denotes the
individual who failed at the ith ordered, genuine failure time (note that we
only have to take into account the training method of the individual as players
with the same training method have the same failure time distribution), R;
consists of the set of players who are at risk of failing/getting injured just
before the jth ordered, genuine failure time and z,, equals zero if player m
works with training method A and equals one if player m works with training
method B.

Because of the one categorical covariate involved in the model, we can rewrite
this partial likelihood as

B exp(f Z?Zl df)
LP(ﬁ) - H?ZI(T’;‘ + T]-Beﬁ)7

where

° 7";? denotes the number of players at risk in group k € {A, B} just before
the jth genuine, ordered failure time, which we denote by 7;;

. df is the number of players that got injured at the jth genuine, ordered
failure time. Note that df € {0,1}.

These numbers are given by 25 d? =3 and

j=1"7

J T TJA 7”;3
1 4 2 1
2 8 3 2
3 10 2 3
4 14 3 1
5 25 1 0



Therefore,
e?

21 (3 1 207)(2 + 367)(3 + &)(1 + 06P)
e3P

T (2+e%)(3+2e7)(2+3eP) (3t eF)

Lp(B) =

(c) This test checks whether or not there is a significant difference between the
hazard of the number of matches played until injury with training method
A and the one with training method B. In particular, if the null hypothesis
B = 0 is not rejected, then there is no significant difference. If on the other
hand, Hj is rejected, then there is strong evidence that there is a difference
between the two hazards.

(d) We see from the figures that the maximum likelihood estimate of 3 is 5 ~ 1.62
as this is the point where both Lp and £p reaches its maximum and where
the score function ¢ is equal to 0. Hence the relative risk, which is the ratio
of the hazard functions of each group, is estimated by

o# = 5.05.

(e) We want to test the hypothesis Hy : § = 0 versus Hy : f > 0 as § > 0 indi-
cates that training method A is better than method B for preventing/delaying
injuries. With the Wald test, we reject Hy at significance level 0.05 if

|-

In order to evaluate this test statistic, we need to compute —6}’3(3). So we
need to determine the negative of the slope of ¢-(8) at § = f = 1.62. As
0'5(B) is close to linear, we can from the plot of ¢, approximate the required
quantity by,

> 20025 = 1.96.

_1/6//

Cp(1.6) = €p(17) _ 0.02 — —0.055

16—1.7 0.1 = 0.75.

_E/I/D(BP) -

We conclude

0(3)] &~ 1.62v/0.75 = 1.40 < 29425 = 1.96.




Hence we do not reject Hy at 0.05 significance level according to the Wald test.
We conclude that there is not enoug evidence to say that training method A
is better in preventing injuries than method B.

Answer to 4

(a) Let T be the “aggregate/collective” survival time of the population. By defini-
tion of the individual hazard function p4(¢|Z), the individual survival function
(given the frailty Z) is given by

P(T > t|Z) = e Jo na(s|2)ds _ effot 2s2ds _ 17
Hence the survival function of the population is given by
P(T > t) = E[P(T > #|Z)] = E[e "]
The Laplace transform of Z is given by

oo o0 . 3 3
E —AZ) _ -z d :/ 7)\z3 —-1.5z _ -3z dz = o
] /0 e alz)dz 0 ¢ (e o) dz A+15  A+3
B 4.5
A+ 15 (A +3)
This then leads to P(T" > t) = m The connection between the

survival function and the hazard function is P(T > t) = e~ Jom(ds Using
this, we then deduce that the population hazard function p,(t) is given by

4.5-2¢(2t24+4.5)

(i (t) = %P(T >t)  @s@spE o 2t2 4+ 4.5
1 - - - .
P(T > t) TS +1f§)5(t2 5 (t2 +1.5)(¢2 + 3)

(b) A crossover phenomenon is when, as a function of time ¢, the ratio of two
population hazard functions (assumed to be continuous), say p(t) and ps(t),
crosses the line y = 1. So a crossover occurs if for some time ¢, p;(t) > ua(t)
and for some other time t', py(t') < pa(t’).

(c) First we need to compute ps(t), the population hazard function of the second
population. Let T be the survival time with hazard function ps(t). We have

e Jom®ds — (T > ¢) =E[P(T > t|Y)]
—E[e” I #2(S|Y)d8]

:E[e* fot 4sYds]

1
. ) —2t2Y _
e = o




where the last equality follows because the Laplace transform of Y, which is
exponentially distributed with parameter 1, is given by

> 1
E —AY) -y “Ydy = )
= [ ey =
We deduce »
(1) = _%P(TQ >1)  meap | At
1 P(Ty > 1)  gag 20241
Next, we show that there is a crossover. We see that p;(t) ~ 4%43 = % as

palt) 2

t — oo (ie. lim o = 1). Similarly, ps(t) ~ % as t — oo. Hence

4/t T
limy o0 l’ﬁgg = 3, so for large ¢, p1(t) is bigger than s (t). On the other hand,
pi(t) ~ 2 =2t as t [ 0 (ie. limy ’“2—9 = 1) and ps(t) ~ 4t as t | 0. Hence
limy Z jgg = 2, so for small ¢, u(t) is smaller than po(t). Hence there is a

crossover phenomenon.

(d) Consider an individual from each population with the same level of frailty
z > 0. Then the hazard rate, at any time ¢, of the individual from population
1 is smaller than the hazard rate of the individual from population 2, since
pi(t|Z = z) = 2tz < 4tz = pe(t]Y = 2). You might think then that, at any
time ¢, the population hazard of population 1, i.e. p;(¢), is also smaller than
2(t), the population hazard of population 2. However, part(c) shows that this
is not the case; in particular py(t) > po(t) for large t. This counterintuitive
result is an illustration of Simpson’s paradox (which is about a trend appearing
on the individual level, but disappearing or even reversing on the aggregate
level).
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Contingencies 2, Exam May-June 2016-17 SOLUTIONS

1 Context

The examination follows on from the approach adopted last year and is similar to that used
for Contingencies 1. A formula sheet is attached to the examination paper which is a subset
of relevant information in the Orange Book. It is a shortened version of the sheet for Con-
tingencies 1 with some added joint life functions described.

The exam will be sat in the computer cluster with internet access restricted to the manch-
ester.ac.uk domain only and access to no software other than R, R Studio and Notepad.
Supervision, including the presence of IT staff, will be arranged in the same way as last year.

As for the questions, they are set consistently with the material covered in the course
notes. Questions are also set consistently with the tutorials. Question 1 is straightforward
book work although does get progressively harder. The use of a same sex couple means
that the student does not have to spend time changing the mortality table - this aspect is
covered in the following question. Question 2 is similar to the questions from the exercise
sheet although part b has an aspect not covered in recent years which is the calculation of
assurances where the order of death is relevant. Question 3 is largely book work but with
an extra ingredient in part b) which will be new but doable for the students. Question 4 is
similar to exercise sheet questions but part b) may extend some students. Mortality rates
come from AMO92 and are given to save some time for the students. Question 5 tests basic
use of the service table and is book work. It has been set separately from Question 6 to
encourage more students to tackle a pensions based question than we have seen in earlier
years. Question 6 reflects the approach adopted for the first time last year for pensions in R
where the basic EPV commutation functions are placed in a vector and the benefits are put
into a separate vector. This contrasts with the commutation functions in the Orange Book
which mixes service periods (intrinsically part of the benefits calculation) with the EPV of
£1 of benefit. Keeping benefits and basic EPV calculations separate makes more sense and
reflects practice in industry where all the hard work is in defining the correct benefits when
carrying out triennial actuarial valuations. Question 7 is a standard unit linked cash flow
question but with the insertion of both a guaranteed sum assured but also a surrender value.
The final two questions are book work based.

The material covered in Contingencies 2 is based primarily on objectives (vi) to (x) (but
with reference back to (i) to (v)) of the CT5 course. In terms of the questions they are set
based on:



e Question 1 - Based mainly on objective (vi), part 1.
e Question 2 - Based mainly on objective (vi), part 1.
e Question 3 - Based mainly on objective (vii), parts 1 and 3.

e Question 4 - Based mainly on objective (viii), part 2 .

(
(
(vi
e Question 5 - Based mainly on objective (viii), part 6 .
e Question 6 - Based mainly on objective (viii), part 6 .
e Question 7 - Based mainly on objective (ix), part 2 .
e Question 8 - Based mainly on objective (ix), part 5.

(

e Question 9 - Based mainly on objective (x), part 4.

2 Solutions

1. In PFA92C20, express the probabilities below in terms of single life probabilities and
then calculate their value (in all cases both lives are female):

[Total 13 marks]
SOLUTION Q1

R Code to produce the single life probabilities needed:

uselLifeTable ("PFA92C20")

x<-65
n<-1

U i W N

fo))
(@]

px65<-getlLives (x+n)/getLives (x)
px65

-3
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2. An insurance company issues a policy to two male lives both aged 30 exact. We will
refer to the two people as person 1 and person 2 to distinguish between them. You
have been asked to calculate the net premium for two possible policies.

[1] 0.9953193

x<-60
n<-1

px60<-getLives (x+n)/getLives (x)
px60
[1] 0.9979422

x<-60
n<-5

px560<-getLives (x+n)/getLives (x)
px560
[1] 0.9853063

x<-55
n<-5

pxb55<-getLives (x+n)/getLives (x)
px555
[1] 0.9930238

a) pes - Peo = 0.9953 x 0.9979 = 0.9932

(a)
(b)
)
)

(c

0.00665 = 0.00007

In both cases, assume interest at 4% p-a. and mortality of PMA92C20 for both lives.
Also use the standard approximation A, &~ (1+14)%%- A, to convert from an assurance
payable at the end of the year in which the status u fails to an assurance that pays out

immediately on the failure of status w.

(a) Assume the policy pays out £20,000 immediately on the second death of the two
lives. Premiums are payable annually in advance until the first death occurs.

3

(1= speo - sps3) = 1 — 0.9853 x 0.9930 = 0.02160
5P60 + 5Ps5 — 5Peo - 5Ps5 = 0.9853 + 0.9930 — 0.9853 x 0.9930 = 0.99990

(d) speo(1 —pes) +5P55(1 —P6o) — 5P60 - 5P55((1 — pes) - (1 — peo)) = 0.00463 +0.00209 —
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Calculate the net premium

(b) In the second case assume the policy pays out a sum of £15,000 immediately on
the death of person 1 but only if he dies first or a payment of £5,000 immediately
on the death of person 2 if he dies second. Premiums continue to be paid annually
in advance until the first death occurs.

Calculate the net premium.

[Total 12 marks]

SOLUTION Q2

#q2
x<-30
y<-30
i<-0.04
useLifeTable ("PA92C20")
A3030<-getEPVJointWholelLifeAss(x,"M",y,"M",i)
A3030
[1] 0.1556561

a3030<- getEPVJointAnnAdvLife(x,"M",y,"M",1i)
a3030

[1] 21.95294

useLifeTable ("PMA92C20")

A30<-getEPVWholelLifeAss (x,1i)
A30
[1] 0.1278313

(a) This is:

Net premium = 20,000 x 1.04°° Asg35/d30:30
= 20,396(As0 + Az — Asoa0)/21.953
= 20,396(0.12783 4+ 0.12783 — 0.15566)/21.953

= 9291




(b) This is:

Net premium = (15,000 x 1.04%° A3, 50 + 5,000 x 1.04%° A3, 4,) /diz0:30
= (15,000 x 1.04%° x 0.5A30.30 + 5,000 x 1.04%° x 0.5A5537)/21.953
= (15,297 x 0.5 x 0.15566 + 5,099 x 0.5 x 0.1)/21.953

= 64.57

3. Consider a 3 state state sickness model with states a, able, ¢, ill and d, dead. Transition
intensities are:

e from a to i at age x : pu%,
e from a to d at age z : p%,
e from i to a at age T : pl%,
e from i to d at age x : pid.
(a) Write down the EPV for a whole of life lump sum death benefit of £10,000 payable
immediately on death.

(b) Another policy also pays out a lump sum on death but the amount payable varies
depending on the circumstances. In the event of death having never been ill the
payment is £20,000. In all other circumstances the payment on death is £10,000.

Write down the EPV of these revised death benefits, again in integral form.

[Total 10 marks]
SOLUTION Q3

(a) answer is 10,000 [ e~ (P2 - po%, + P - pid,) - dt.
(b) answer is 20,000 [;° e™ P2 . pod, - dt

and

10,000 [ e 0 ((,Poe — ,PIT) - o, 4 (P2 - piid ) - dt.



4. Consider a 3 state multiple decrement model with states a, active, r, retired and d

dead.

(a) Calculate the dependent probabilities of dying and of retiring when aged 60 and
61 where the independent probabilities of death are ¢g, = 0.008022 and ¢d, =
0.009009 and the force of retirement ;2" = 0.1 for all = > 0.

(b) Now consider the introduction of a fourth state, withdrawal, in our model so that
the model remains a multiple decrement model. If withdrawal is assumed to occur
only at each year end and the independent probability of withdrawal is 0.1 for all
x > 0, calculate the dependent probability of a person aged 60 exact dying when
aged 61.

[Total 15 marks]
SOLUTION Q4

(a) qdy = 0.008022 and ¢g; = 0.009009.

Hence:

pds = —In(1 — ¢%) = 0.008054, and

pd = —in(1 —g¢¢) = 0.009050

Therefore:



0.008054
d —0.108054

- . (1-
(a0)50 0108051 1€ )

— 0.007634
(aq)j, = 0.1 x 0.007634/0.008054

= 0.09479

0.009050
d —0.109050

aQ)l, = ——— . (1-

(00)5 0100050 7€ )

= 0.008574
(ag)i, = 0.1 x 0.008574,/0.009050

= 0.09474
b) The probability is:
( p y
(ap)eo-(1—0.1)- (aq)gl1 = (1—1(0.007634 4+ 0.09479)) x 0.9 x 0.008574 = 0.006926.

5. Use the pension scheme service table to calculate the following:

(a) The probability that a life aged 40 exact withdraws from the pension scheme in
the following year.

(b) The probability that a life aged 50 exact retires in normal health at any time
between the ages of 60 and 65 inclusive.

(c) The estimated salary earned in the 12 month period through to retirement when
aged 65 exact for a person now aged 30 exact with a salary in the previous year
of £15,000.

[Total 9 marks]
SOLUTION Q5

1 uselLifeTable ("Pension")
2| getPensionWithdrawn (40)
3| [1]1 413



4| pwé4O<-getPensionWithdrawn (40)/getPensionActive (40)
5| pwé4oO
6| [1] 0.02682341

8| rx<-getPensionRetired("all")

9 rx
10 [1] 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

11 | [16] 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

12 | [31] 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0

13 | [46] 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3681

14 | [61] 516 453 395 342 3757

15| rx60<-rx[60:65]

16 rx60

17 | [1] 3681 516 453 395 342 3757
18 | getPensionActive (40)

19 | [11 15397

20 | pr<-sum(rx60)/getPensionActive (40)
21| pr

[1] 0.5938819

[OVIN )

=

getSalScale (29)
[1] 4.991
getSalScale (64)
[1] 11.328

ot

DN DD DN DN
3 C

-~

Hence the answers are:

(a) 0.02682
(b) 0.59388
(c) 15,000 x 11.328/4.991 = 34,045

6. A pension scheme provides a lump sum benefit on retirement which is calculated as
follows:

Lump sum payable on retirement at age x = 0.05 x FPS at x x N.

where:



I O

16
17
18
19

e ['PS is an estimate of the average salary earned over the three years prior to
retirement and

e N is the length of service in years and part years, and is calculated from the date
of joining the pension scheme through to the estimated date of retirement.

Use the pension service table to:

(a) Write down a vector showing an estimate of the amount of lump sum payable on
retirement when aged 62 and all subsequent ages through to normal retirement
at age 65 inclusive for a person now aged 50 exact and who joined the pension
scheme 25 years previously. The person has a salary of £20,000 earned in the
previous year.

(b) Write down the vector for the EPV of a lump sum payment of £1 on retirement
when aged 62 and all subsequent ages through to normal retirement at age 65
inclusive. Then calculate the EPV of the benefits calculated in part a). Use an
interest rate of 4%p.a.

[Total 16 marks]
SOLUTION Q6

N<-c(37.5,38.5,39.5,40)

N

[1] 37.5 38.5 39.5 40.0
zh<-getAveSalScale("allHalf")

zhr<-zh [62:65]

zhr

[1] 10.74417 10.90567 11.07183 11.15667
benvec<-N*0.05*20000*zhr/getSalScale (49)
benvec

[1] 44613.69 46491.88 48426.24 49414.98

i<-0.04
cr<-getCommCr ("all",i)

epvvec<-cr [60:65]/getCommD (50, i)

epvvec

[1] 0.02173846 0.01822612 0.01517364 0.16345128
epv<-benvec*epvvec




20 | sum(epv)
21 | [1] 10628.85

Hence the answers are the vector benvec shown above for part a) and for part b) the
vector epvvec shown above and the EPV is £10,629.

7. An insurer writes a 2 year unit linked endowment policy for a life aged 50. Level
premiums are paid yearly in advance. Benefits are paid at the end of the year.

(a) Construct a table setting out the development of the unit fund each year and then
a table showing the cash flows each year for the non unit fund. Briefly show your
workings so that the derivation of each item in the tables can be seen and state
what the profit vector for the policy is.

Details are as follows:

Premium = £ 2,000 p.a.
Allocation is 50% in year 1 and 105% in year 2
Bid offer spread = 5%

Management charges 0.5% deducted from the unit fund at the end of the
year, before any claim payments are made.

Initial expenses are 15% of first premium and £ 500 on receipt of the first
premium.

Renewal expenses are 1% of the second premium and £ 50 on payment of
this premium.

Dependent probability of death = 0.01 in year 1 and 0.012 in year 2 and the
dependent probability of withdrawal is 0.1 in each year.

A minimum sum assured of £ 3000 is payable on death or on maturity of the
policy (both payable at the policy year end).

A surrender value of 75% of premiums paid is made at the policy year end.

Assumed rate of return of 5% p.a. on the unit fund and 3% p.a. on the
non-unit fund.

[Total 15 marks]

SOLUTION Q7
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Unit Fund explanation Year 1 Year 2
Allocation 50% then 105% of £2,000 | 1,000 2,100
less bid /offer 5% off -50 -105
=950 =1,995
add brought forward fund - +992.51
=2,987.50
add interest at 5% +47.50 | +149.38
=997.50 | =3,136.88
less mangt charge less 0.5% -4.99 -15.68
closing UF value =992.51 | =3,121.20
Non Unit Fund explanation Year 1 | Year 2
Allocation 50% then -5% of £2,000 1,000 -100
add bid/offer from UF +50 +105
less initial expenses | 15% of 2,000 + 500 -800 -
less renewal expenses | 1% of 2,000 + 50 - -70
=250 -65
add interest at 3% +7.50 -1.95
=257.50 | =-66.95
less death cover (3000 —992.51) x 0.01, 0 in yr 2 | -20.07 -
less surrender cost (.75 x 2000 — 992.51) x 0.1 -50.75 -
add mangt charge from UF +4.99 | +15.68
closing NUF value =191.67 | =-51.27

Closing NUF is the profit vector.

8. Give two reasons why insurance companies zeroise their reserves.

[Total 4 marks]
SOLUTION Q8

Insurers zeroise their reserves so that:

11



(a) any negative cash flows that may occur in some future years of the policy’s lifetime
are removed so that there is no expected need for capital at a later date - capital
is only needed at the outset of the policy, and

(b) Equally insurers do not want to over reserve and tie up too much capital in
reserves.

Zeroising meets these objectives.

. Define what temporary initial selection and class selection are and give an example of
each in the area of life assurance.

[Total 6 marks]
SOLUTION Q9

Class selection refers to permanent differences in the expected mortality experience of
two groups. For example in life assurance different premiums might be charged for
men and women because men and women show different mortality experience across
all future years.

Temporary initial selection refers to different mortality experience that exists in the
early years of a policy and where these differences disappear after a period of time.
An example is the impact of a medical on taking out an insurance policy. A group
of people aged = who have just passed a medical would be expected to show a lower
mortality rate than that of a another group also aged x but who passed a medical
several years ago or indeed have never taken a medical.

12



Solutions to exam MATH39542 Risk Theory 2016/17

General remarks The syllabus of MATH39542 Risk Theory consists of (i) ruin theory
(Questions 1&2), (ii) premium principles (Question 3), (iii) Bayesian statistics (Question 4
and part Question 5) and (iv) credibility theory (part Question 5).

Most of the questions are similar to questions on the example sheets (the degree of
similarity varies). However none are identical, other models (not just other parameters) are
used instead and/or the question is somewhat different. Notably:

e (partly) unseen are Question 1(c) (though a similar technique has been used in the
lecture), Question 2(b) (bounding the Lundberg coefficient), both premium principles
in Question 3, and Question 4 (though a similar technique has been used in the lecture
to prove the important result when g = 1)

e Question 3(a)(i) and 3(c)(i) are bookwork

Finally, last year’s exam turned out to be a bit too straightforward (heavy scaling down
had to be applied), this exam paper is hence on purpose more challenging — the students

will be told this.



Answer to 1

(a) The requested probability is P(N; < 1), which using that N; ~ Poisson(\) can be
computed as

P(N, <1)=P(N, =0)+P(N, =1) = e (1 +\).

(b) The requested probability is P(U;, > 0), where J; denotes the arrival time of the first
claim. Hence

PU;, >0)=Plu+cJ; —1>0)=P(J; > (1 —u)/c).
If w > 1 then (1 —u)/c < 0 and hence the probability equals 1. If u € [0,1) then

using that J; ~ Exp()) it follows that the probability equals exp(—A(1 — u)/c).

(c) Let Ay be the event that the first k£ claims do not lead to ruin given that the initial
capital is u. For any z > 0 it holds that

P(Ay| Uy, = 2) = pr_1(2)

since by the conditioning the first claim did not lead to ruin and by homogeneity the
probability of no ruin in the interval (Ji, Ji] given that Uj;, = z equals py_1(z). For
any z < 0 we have that

P(Ak|UJ1 :Z):O
since by the conditioning ruin happens due to the first claim. As given in the question
we also have that py_1(2) = 0 for all z < 0. So we have that P(Ay | Uy, = 2) = pr_1(2)
for all z € R. Hence by the Tower Property

pr(u) =P(Ag) = Epr—1(Uj)] = E [pr_1(u+cy — 1) = /000 pkfl(lb—l-cs—l))\e_/\s ds,

where in the final step we used that J; ~ Exp(\).

(d) Excess of loss reinsurance with retention level M entails that the insurer pays X ,iM) =

min{ Xy, M} for the k-th claim. Since X = 1 and M € [0,1] this simplifies to
xM =M

L =M.

(i) Writing the capital process with reinsurance in force as

N
Ut(M) = u+ Mt — ZX,&M) fort >0
k=1

where ¢™) = ¢ — Be(1 — M), the NPC entails that ¢M) > )\E[Xl(M)] ie.
¢ -9
A—fBc

(Note that both denominator and numerator in above fraction are negative due
to 6 > 1 and the assumption that ¢ > A, the latter being the NPC for U).

c—pe(l=M)>IM <= M >

2



(ii) Let h(M) denote the ruin probability for UM). The insurer aims to minimise
this over M € [0, 1]. Denoting

=2 c(0,1),

we know from part (i) that for M € [0, My] the NPC does not hold and hence
h(M) = 1. For M € (My,1], since the initial capital is 0 we know from the
lecture (notes) that

B A (M) M
Hence for such M N
h/(M) — c ( _B)

(¢ = Be(1 = M))*

which is strictly negative since 5 > 1.

So h(M) =1 for M € [0, Mp] and strictly decreasing on (M, 1], hence it follows
that M =1 i.e. no reinsurance at all is the optimal choice.



Answer to 2

(a) The Laplace transform of the claim sizes is computed as

1 —x 1 —(04+1
1 1— (6+1)
Ele™?] = / et~ cdr = / e~ 0FVT Qg = ° for # € R
Kt er=t ey =@+ D

(where this fraction is understood to be equal to 1/(1 —e™!) for § = —1).
Using a formula from the (lecture) notes we can compute the Laplace exponent of U

as (041)
1—e"
=l — Ele =0 —15+1. it R
£0) =cl — A+ XEle "] =0 5+ 5(1_671)(9+1> or € R,

with (hence) domain R.

(b) (i) We first compute the common mean of the claim sizes as

! - 1 ! 1—2e! —2
E[X;] = / ‘ dx / re “dr = S ~ 0.4.
0 0

$1—e*1 :1—6*1 1—et e—1

The Net Profit Condition ¢ > AE[X;] i.e. 1 > 1.5E[X}] is hence satisfied.

We know from the lecture (notes) that the survival probability ¢ is non-decreasing
as a function of u and that ¢(0) = 1 — AE[X;]/¢, hence for all v > 0

e—2 e—2

plu) 2 p(0) =1-15-— = ¥(u) < Lo——

(& €

(i) To establish ¢(u) < e '¥* we use the Lundberg inequality which states that
P(u) < e ™ where —R is the unique negative root (provided it exists) of the
Laplace exponent £ of U. Now, we know from the lecture (notes) — or alterna-
tively by direct analysis — that & is a strictly convex function with £(0) = 0 and
€'(0) > 0 (the latter since the NPC holds). Since the domain of £ is R as verified
in part (a), we know from the lecture (notes) — or again direct analysis — that
£(—o0) = oo. Hence it follows that ¢ does indeed have a unique negative root
—R and furthermore that £(0) < 0 iff # € (—R,0). Even though we can’t find
an explicit expression for R, since {(—1.3) ~ —0.03 < 0, the analysis of £ shows
that hence R > 1.3 and therefore by the Lundberg inequality

w(u) S efRu S efl.Su

as required.



Answer to 3

(a) (i) The no rip-off property for a premium principle 7 entails that if a constant C' > 0
exists such that X < C (a.s.), then 7(X) < C.

(ii)) No. A counter example is for instance the trivial risk X = 0, or otherwise for
instance any non-trivial rv X with range {0,a} since then X < a but n(X) =
E[X]+a > a.

(b) (i) Since Fx(z) =1 — e ** for x > 0 it follows that

o0 o0 b
ma(X) = / (e_o“”)l/b de = / e M Ay = =,
0 0

«

and since E[Y] = 1/ it follows that we should set 5 = «/b.

(ii) Comparing the pdf’s of X and Y, i.e. fx(v) = ae™® and fy(z) = (a/b)e=22/"
for x > 0, there exists an xy > 0 (specifically zo = log(b)/(a(1 —1/b))) such that
fr(x) > fx(x) iff z > 5. Hence Y takes large values with a larger probability
than X (Y has a fatter tail than X but the students haven’t seen this term) and
is therefore more risky.

(¢c) (i) The scale invariance property for a premium principle 7 entails that 7(cX) =
cm(X) for all risks X and ¢ > 0.
(ii) Yes. Setting Y = ¢X we have that

PY <z)=P(X <z/c) = Fy(z) = Fx(z/c).
Hence
(X)) = /OOO (1= Fy(z/o) do = c/ooo (1= Fy(z/o)" % dz

— c/ooo (1 - Fx(y)"" dy = en(X)

where we used the substitution y = z/c.



Answer to 4

We know from the lecture (notes) that the Bayes estimate 6z (x) is a minimiser of the
posterior risk

op 1y — E[l(0,y)| X = 1].

For any y € R we may rewrite this as follows, using that g is a strictly positive function and
hence E[g(©) | X = z] > 0:

op(y) = E[g(©)(© —y)* | X = 1]
=E[g(0)0?| X = 1] - 2yE[g(©)O | X = 2] + y’E[9(0) | X = ]
E[g(©)0* | X = 2] E[g(©)0[X = 7] 2)

=E[g(0) | X = ] < E[g(©)| X =2] 2y Elg(©) | X = 7]

_ _ E[g(©)0|X =a]\* E[g(©)0|X =1]* E[g(0)0?*|X = 4]
= POy = ((y‘ SO x=a]) B X EO %= )

Again using that E[g(©) | X = z] > 0 it readily follows that the (unique) minimiser is

- E[(©)0|X =4
U5 = Fh@) X =a




Answer to 5

We're given that © ~ Exp(2) and denoting by X the number of bite incidents in a year,
given © = 6 we have that X ~ Poisson(f).

(a) We are asked to compute the collective premium g = E[X], which can be computed
using the Tower Property directly, or (equivalently) as we know from the lecture
(notes) may also be computed as p = E[u(0©)], where

w®) =E[X|0=0] for0>0.
Since given © = 0, X ~ Poisson(#) we have that p(f) = 6 and hence
1
n=Elp©)] =E[6] =5,

where we used that © ~ Exp(2).

(b) For the Bithlmann credibility estimate given the observed sample = = 4, i.e. figy(4),
in addition to u(0) =0 and p = 1/2 as computed in part (a) we need

v() =Var(X |0 =0)=0, v=E[p(O)]=EO ==

and
k = Var(u(©)) = Var(0) =

where we used that given © = 6, X ~ Poisson(f) and that © ~ Exp(2). Now in
general for an observed sample of length n denoted Z:

Y

IS,

. _ _ nK
gy (Z) = (1 —w)u+wzx  where w = pa—
In this case we hence have that
1-1/4 1
wWN == —
1/2+1-1/4 3
and 2 1 1 5
ip(A) =224 - 4=2
fpv(d) =35+ 3 3

(¢) We know from the (lecture) notes that Bayes estimate 6 (4) for Brutus’ risk parameter
value under squared error loss is the mean of the posterior distribution. We have that
fo(0) = 2e7 for 6 > 0 and fyje(z|0) = e /2! for § > 0 and = € N. Hence by
Bayes Thm for any 6 > 0:

0+ e
foix(014) = cfxie(4]0) fo(8) = 0679526729 = cf'e™

where ¢ and ¢ are constants independent of . We recognise this as a Gamma(5, 3)
distribution, with mean 5/3. Hence 65(4) = 5/3.

Note: if a student does not recognise this distribution then ¢ could be determined
using that the total mass is 1 and then the mean could be computed. Requires
integration by parts and more work obviously.



MATH31052
SECTION A A

Al.
(a) Define what is meant by a topology on a set X.

(b) Define what is meant by saying that a function f: X — Y between topological spaces is
continuous. Define what is meant by saying that f is a homeomorphism.

(c) Prove that the closed disc D* = {z € R? | |z| < 1} with the usual topology is homeomorphic
to the hemisphere {z = (2, 19, 23) € 5% | x5 > 0}.

[Here S? denotes the unit sphere {x € R? | |z| = 1} with the usual topology.]

[10 marks]

Solution
(a) Given a set X, a topology on X is a collection 7 of subsets of X with the following properties:

i)bder, Xer

(ii) the intersection of any two subsets in 7 is in 7:
Ul,UQGT:>U1ﬂU2€T;
(iii) the union of any collection of subsets in 7 is in 7:

U,\ETforall)\GA:>UU,\€T.
AEA

[5 marks, bookwork]
(b) f: X = Y is continuous if
V is open in Y = f~(V) is open in X
[1 marks, bookwork]

A homeomorphism is a continuous bijection with continuous inverse.

[2 marks, bookwork]

(c) A homeomorphism f: {x € 5% | z3 >0} — D?is given by f(x1, T2, 23) = (71, 22) with inverse
FH s y2) = (1,92, V1 — 43 — 43)-
[2 marks, question set]

[Total: 10 marks|
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A2.
(a)
(b)
(c)
(d)

MATH31052

Define what is meant by saying that a topological space X is path-connected.

What is meant by saying the path-connectedness is a topological property?

Prove that path-connectedness is a topological property.

Prove that
{r eR?||z—(0,1)] <lor|z+(0,1)] <1} C R?

(with the usual topology) is path-connected.

[10 marks]

Solution

(a)

A path from z( to z1 in X is a continuous function o: [0, 1] = X with ¢(0) = ¢ and (1) = ;.

X is said to be path-connected if, for each pair of points g, 1 € X, there is a path in X from
Zo to x;.

[3 marks, bookwork]

Saying that path-connectedness is a topological property means that, if X =Y are homeomor-
phic topological spaces, then X is path connected if and only if Y is path-connected.

[1 marks, bookwork]

To prove this, suppose that X is path-connected. Then, given two points yg, y1 € Y let xg ,
x1 € X be points such that f(x;) = y; (these points exist since f is a bijection). Since X is path-
connected there is a path o: I — X such that ¢(0) = zp and ¢(1) =x; . Then foo: I - Y
is a path in Y from y to y; (since the composition of continuous maps is continuous). Hence,
Y is path-connected. Conversely, if Y is path-connected then so is X by the same argument
(interchanging the roles of X and Y ).

[3 marks, bookwork]
One sees that X, = {x € X |z > 0} and X_ = {z € X | z < 0} are path-connected. For

example by considering the straight line o(t) = txg + (1 — t)z; between two given points xo,
X € X_ or Xg, T1 € X+.

Now, since X = X; UX_ and 0 € X, N X_ one can find a path ¢ from every point in z € X
to 0. By composition and inversion one obtains a path between two arbitrary points xg, z1:

_ =0 0
0 =0, *0,.

[3 marks, new]

[Total: 10 marks]
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MATH31052

A3.
(a) Define what is meant by saying that a topological space is Hausdorff.
(b) Determine whether the set S = {a, b, ¢} with topology 7 = {0, {a, ¢}, {b},{a, b, c}} is Hausdorff.

(c¢) Suppose that X and Y are topological spaces. Define the product topology on the Cartesian
product X x Y . [It is not necessary to prove that this is a topology.]

(d) Prove that if A C X x X is closed in the product topology, then X is Hausdorff.

[10 marks]

Solution

(a) The topological space X is Hausdorff if, for each distinct pair of points z, y € X, there exist
open sets U and V in X suchthat z ¢ U,y € Vand UNV = 0.

[2 marks, bookwork]

(b) This space is not Hausdorff because every open subset containing a also contains ¢ and so open
subsets as required cannot be found for x = a and y = c.

[2 marks, bookwork]
(¢) The product topology on X x Y has a basis
{U xV | U open in X,V open in Y},
i.e. the open sets consist of all unions of such sets.
[2 marks, bookwork]

(d) Assume A is closed. Hence X x X \ A is open. By definition of the product topology this
means it is a union of open rectangles, i.e. sets of the form U x V C X x X \ A with U and
V' both open in X. Consider z,y € X with x # y then (z,y) lies outside the diagonal. Hence,
is has to be contained in such a set

UxVCXxX\A.

On the one hand this implies that € U and y € V. On the other hand U NV = (), since for
x € UNV one would have A 3 (z,2) e U x V. [4 marks, question set]

[Total: 10 marks|
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MATH31052

A4.

(a) Suppose that X is a subspace of a topological space X. Define what is meant by saying that
X, is a retract of X.

(b) Use the functorial properties of the fundamental group to prove that, if X; is a retract of X,
then, for any xy € X7 , the homomorphism induced by the inclusion map

Ty 7T1(X17ZE0> — 7T1<X, ZE())
is injective.
(c) Hence prove that S! is not a retract of the closed disc D? .

[You may quote any fundamental groups that you need, without proof.]

[10 marks]

Solution

(a) X3 C X is a retract of X when there is a continuous map r: X — X7, such that r(z) = z for
x € X;. [3 marks, bookwork]

(b) By the functorial properties we have
Ty 00y = (roi), = (idx,)w = idr, (x,,00): M1 (X1, 20) = 71 (X7, 20).

Since the composition of r, and i, is bijective r, must be surjective and 7, must be injective.

[4 marks, bookwork]

(c) We have m1(S1, 29) = Z and 7 (D?, zy) = 1, the trivial group. But there is not injective map
Z — {1}. Hence, S! cannot be a retract of D2 [3 marks, bookwork]

[Total: 10 marks|
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B5.
(a)

(b)

(c)

MATH31052
SECTION B B

Suppose that ¢: X — Y is a surjection from a topological space X to a set Y . Define the
quotient topology on Y determined by ¢. State the universal property of the quotient topology.

Suppose that f: X — Z is a continuous surjection from a compact topological space X to a
Hausdorff topological space Z . Define an equivalence relation ~ on X so that f induces a
bijection F': X/~ — Z from the identification space X/~ of this equivalence relation to Z.
Prove that F is a homeomorphism. [State clearly any general results which you use.]

Prove that the quotient space [0,1] x [0,1]/ ~ with (0,s) ~ (1,s) is homeomorphic to the
cylinder [0,1] x S* C R3.

[15 marks]

Solution

(a)

Given a topological space (X, 7) and a surjection q: X — Y the quotient topology on Y is
given by
(vcy|qg'(v)er)

The wuniversal property of the quotient topology is: f: Y — Z to a topological space Z is
continuous if and only if the composition foq: X — Z is continuous.

[4 marks, bookwork]

Given a continuous surjection f: X — Z, define an equivalence relation on X by = ~ 2’ <
f(z) = f(z'). Then we may define F': X/~— Z by F([z]) = f(x). Since [z] = [2/] & x ~
' < f(x) = f(2') (by the definition of the equivalence relation), the function F' is well-defined.
Since F([z]) = F([2']) & f(x) = f(2') & x ~ 2’ (by the definition of the equivalence relation)
it follows that [z] = [2/] and F is injective. Since f is a surjection, y = f(x) for some x € X
and so y = F([z]). Hence F is a surjection. This shows that F': X/~ — Z is a bijection. The
map F': X/~ — Z is continuous by the universal property since F' o g = f which is given as
continuous, where ¢: X — X/~ is the quotient map given by ¢(z) = [z].

The space X/~= ¢(X) is compact since it is the continuous image of a compact set. Hence
F' is a homeomorphism since it is a continuous bijection from a compact space to a Hausdorff
space.

[7 marks, bookwork]
To see this, define a surjection f: I? — I x S* by f(z,y) = (z, exp(2miy)) where we think of S*
as {2 € C | |z| = 1} using the standard identification C = R?. This function is continuous by
the universal property of the product topology since the component functions are continuous.

Now, I x S' is Hausdorff (a subset of Euclidean space) and I x I is compact (a closed and
bounded subset of Euclidean space). Now the result follows from (b).

[4 marks, bookwork]
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B6.
(a)

(b)

(c)

MATH31052

[Total: 15 marks|

Define what is meant by a compact subset of a topological space and by a compact topological
space.

Prove that, if f: X — Y is a continuous function of topological spaces and K C X is a compact
subset, then f(K) is a compact subset of Y.

Given a non-compact Hausdorff space (X, 7) consider the set X* = X LI{oo} and the topology
T =7U{(X\C)U{oc} | C C X compact}.

Show that (X*,7*) is compact.

[Tt is not necessary to prove that 7* is a topology.]

[15 marks]

Solution

()

(b)

K C X is compact if each cover of K by open subsets of X has a finite subcover.
If X itself is a compact subset then X is a compact space.

[3 marks, bookwork]
Suppose that F is an open cover for f(K). Let f~Y(F) ={f"%V) |V € F}. Then f~}(F) is

an over cover for K since, given a € K, f(a) € f(K) so that f(a) € V for some V € F. Hence
a € f~YV) for some V € F.

Now, since K is compact, f~!(F) has a finite subcover for K, { f=1(V}), [~ 1(Va),..., f~1(V,) }.
Thus, given b € f(K), b = f(a) for some a € K. Then a € f~'(V;) for some i, 1 < i < n, so
that b = f(a) € V;. Hence { V1, V4, ..., V,, } is a finite subcover of F for f(K).

Hence f(K) is compact.
[6 marks, bookwork]
Consider an open cover F of X*. In order to contain oo it has to include at least one open

subset Uy, of the form X \ C'U{oo} where C' C X is compact. Now, F/ = {UNX | U € F} is
an open cover of X (since U and X are open in X*) and hence of C.

By compactness of C' a finite subcover {U; N X,...,U,, N X} C F suffices to cover C. But
then one has the finite subcover {Uy, Uy, ..., Uy} C F.

[6 marks, exercise set]

[Total: 15 marks|
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MATH31052

B7.

(a) Prove that, if the product og * 79 of two paths oy and 7y in a topological space X is defined
and the paths oy and 7, are homotopic to oy and 7y respectively, then the product oy * 77 is
defined and is homotopic to gy * 7.

(b) Explain how a continuous function f: X — Y induces a homomorphism f.: m (X, x¢) —
(X, f(x0)). You should indicate why f. is well-defined and why it is a homomorphism.

(c) Prove that, for topological spaces X and Y with points zyg € X, yo € Y, there is an isomorphism
of groups
T (X X Y, (20, 90)) = (X, 20) X m1 (Y, o)

[15 marks]

Solution
(a) Given homotopic paths H: oy ~ o1 and K: 79 ~ 71 such that g * 7 is defined. Then (1) =
oo(1) = 170(0) = 71(0) and so the product oy * 7 is defined.

Suppose that H: oy ~ 01 and K : 79 ~ 71. Then we may define a homotopy L: og* 19 ~ 01 %7y
by

L(s,1) H(2s,t) for0<s<1/2andtel,
YT K@2s—1,t) for1/2<s<1landtel.

This is well defined since, for s = 1/2, H(1,t) = x; = K(0,¢). In addition, L is continuous by
the Gluing Lemma since [0,1/2] x I and [1/2,1] x I are closed subsets of I*

[5 marks, bookwork]

(b) The function f, is defined by f.([o]) = [f o o]. It is well-defined since, if [og] = [o1] then
o9 ~ o1 and so there exists a homotopy H: oy ~ 0y. Then fo H: I? — Y gives a homotopy
foog~ fooy and so [f oog] = [f ooyl

To see that f, is a homomorphism suppose that [o], [7] € 71 (X, zo). Then

fllol[r]) = fullo = 7)) = [f o (0% 7)]

and
Fllo)flr]) = [f e ollfor] = [(foo) « (f oT)]
and by writing out the formulae we see that fo (o x7) = (foo)*(fo71): [ — Y. Hence,
fullo]lr]) = fu(lo]) fe([7])-
[5 marks, bookwork]

(c) Let p1: X XY — X and py: X XY — Y be the projection maps. The function
™ (X XY, (w0, 90)) = mi (X, 20) X m1(Y, 0)

given by a — ((p1)«(@), (p2)«()) is an isomorphism. To see this we write down the inverse.
Given a loop o7 in X based at zy and a loop o5 in Y based at 3y then we may define a loop o
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in X xY based at (z,y0) by o(s) = (01(s),02(s)). Then ([o1], [02]) > [o] is well-defined and
provides the necessary inverse. Hence the given function is an isomorphism of groups.

[> marks, question set]

[Total: 15 marks|

BS8.

(a) Define what is meant by the path-components of a topological space. [You may assume the
definition of a path and properties of paths.]

(b) Prove that a continuous map of topological spaces f: X — Y induces amap f,: mo(X) — m(Y)
between the sets of path-components, taking care to prove that your function is well-defined.
Prove that if f is a homeomorphism then f, is a bijection.

(c) A pair of distinct points {p, ¢} in a path-connected topological space X is called a cut-pair of
type n when the subspace X \ {p, ¢} has n path-components. Prove that a homeomorphism
f X — Y induces a bijection between the subsets of cut-pairs of type n for every n € N.

(d) Hence show, using cut-pairs of type 3 or otherwise, that no two of the following subspaces of
R? with the usual topology are homeomorphic.

[15 marks]

Solution

(a) Define an equivalence relation on X by x ~ &’ if and only if there is a path in X from z to z’.
Then the path-components of X are the equivalence classes.

[2 marks, bookwork]

(b) Suppose that f: X — Y is a continuous map. Then this induces a function f: mo(X) — m(Y)
by f([z]) = [f(z)]. This is well-defined because [x] = [2/] implies that x ~ 2’ so that there is
a path 0: [0,1] — X in X from = to 2’. Then foo:[0,1] — Y is a path in Y from f(z) to

f(a') and so [f(x)] = [f(2')].
[3 marks, bookwork]

If fis a homeomorphism then f, is a bijection since the inverse ¢ = f~': Y — X induces a

fu]nction gx : mo(Y) = mo(X) inverse to fi since g.(f«([z])) = [g(f(z))] = [z] and f.(g.([y])) =
Y.
[2 marks, bookwork]
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(c¢) Suppose that f: X — Y is a homeomorphism and {p, ¢} is a pair of distinct points in X.
Then f induces a homeomorphism X \ {p,q} — Y \ {f(p), f(¢)} and this induces a bijection
fer mo(X\{p,q}) = mo(Y\{f(p), f(q¢)}). Hence {p,q} is a cut-pair of type n in X if and only
if {f(p), f(q)} is a cut-pair of type n in Y.

[3 marks, exercise set]

(d) In space (i) there are two cut-pairs of type 3 (the intersection points of the line segments and
the inner or out circle respectively). In space (ii) there is a unique cut-pair of type 3 (the two
points at the ends of the diameter). In space (iii) there are infinitely many cut-pairs of type 3
(picking two arbitrary points on the radial line segments). [5 marks, new]

[Total: 15 marks|

END OF EXAMINATION PAPER
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