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SOLUTIONS
Section A

Al. Let V be a normed vector space (with norm | - |i). Then we define a
norm of a linear functional f by

£l = sup [f(z)|-
Jell=1

- Alternatively,

11 = sup L&,
lelo 2|
(Either definition will do.)
[bookwork, 3 marks|

A2. Hslder's Inequality: if p,q > 1 satisly 1/p+1/q = 1 then, for a;,b; € C,

i=1,...,n,
e n 1/13 Y 1/‘1
S b < (zw) (Zw) ,
i=1 i=1 =1

with equéllty if and only if |a;{?/|b:|¢ is constant.
, - [bookwork, 3 marks]

A3. T is linear: we have T(Mf + pg)(z) = (M + pg)(1 —2%) = Af(1 -
2?) + pg(l — 2?) = AT f(z) + uTg(z). ' '
. [unseen, 2 marks|.
T is bounded: Let f be such that || flle = 1. Then |Tf(z)| = [f{1 -
)| < | flleo = 1. Hence T is bounded.
[unseen, 2 marks)



for all T,y € H.

_ A_4 We say that A cC (_X ]R) isan algebra. if A isa hnear subspa,ce of

(X R) Wlth the addltlonal property that
o j,gEA => fgeA

: N [bookwork 2 marks]
Stone-We1erstraee Theorem Let X be a compact metrlc epaee Let
AcC C’(X ]R) be an algebra Such tha.t

1 A Conta.lns a non—zero Constant functlon

2. A sepa.ra.tes pomts (1 e, il z, 2’ e X,z 75 x, Lhen there ex1sts f e A
' such that flz)y 95 Fl! )) : R TL .

Then A s umformly dense in C (X R)
[bookwork 3 marks]

'A5 Let i be a Hllbert spa.ce For T y € H, we have the 1dent1ty

e+l + fe—ul? = 2el? 2l
| ' [bookwork 2 marks|

A6. A Banach space X is called reﬂe}cwe 1f the natul al embeddmg of X
into its second dual X** is injective. C'[0,1],£" and £ are exa.mplee of non-
reﬂexwe spacee '

[bookwork 3 marks]

AT. Let H be a vector space over R or (C An inner product Is a map
(,):Hx H=R (orC) such that; for all z, y,z € H and scalars X, j,

Lz, ) = {y, 2} (complex conjugation); _'

2. Az + py, 2) = Mz, 2) + py, 2); and
3. (2,2) > 0 and {z,2) =0 if a.ind only if z = 0, o |
| | - ' [bookwork, 3 marks]
Let {:, ) be an inner product on H. Then .

e o) < 22,007,

[bookwork, 2 marks] _



cforallz e X,

B8. (a) We say that two norms | - || and || - ||' on X are equivalent if there
exist (7, Cy > 0 such that ,

Cillel’ < [l < Call=ll’s

[bookwork, 3 marks|
(b) Let || - lf; be the T-norm on R™ and let || - || be an arbitrary norm. We
shall show that || - |y and || - || are equivalent.
As usual e; is the basis vector with 1 in the ¢th place and 0 elsewhere.
Write © = (21, ...,%,) = o, Zig; and let M = max; <<, ||€;||. Then

lell <3 lmilllesll < M ) Izl = Mile.

Now we shall show that infzemn [|Z]|/2]i1 is positive. If it isn’t, then
we can find a sequence z; such that

dim [zl =0,
Seb yi = @i/ ||z, s0

v e{y e R™: iyl < 1}

This set is closed and bounded (hence compact), so y; has a convergent
subsequence y;; with limit y. In other words lim;, 0 ||lgs; — ylli = 0 and
(since |ly;, |l = 1) ||ly|lx # 0. However, we also have

o | = Nwll] < Nl — wll < Mllyg; — ol — 0, as j— +oo,

so ||yl = lmjoye ||yh|| = 0. But ||y}l = 01if and only if y = 0, giving a
contradiction with ||y||; # 0. Therefore, we can define

<

|-’13||1'

0<m= inf
O#zcRk™

Clearly, ljz|| = m||z||;, as required. :
[bookwork, 14 marks|



(c) Lét (az) = £2 Then a; — 0, Whence there exists K > 0 such’ tha.t ]a1,| <K .

for all i> 0 On the other hand, (1, 1, 1, .} is in £%° but not in I3

[Slmlla.r to exa.rnple sheets 3 ma.rks]

. o m )1 1<k<n, -
T k>wl

' .Then [lz® 5 = v/, which tends to 00, whllst [[:1:(”)”,:,o = 1. The1efore these
‘norms are not equlvalent '

' [unseen 5 marks]



B9. (a) the nth Bernstein polynomialrfdr [ is defined as follows:

Bulfiz) = (Z’) / (2) (1 =z b

k=0

[bookwork, 2 marks|

{b) Suppose that f € C[0,1] and that € > 0. Then there exists a polynomial
p(z) such that ||f — p||e < €.
[bookwork; 2 marks|
Proof. Fix € » 0. By uniform continuity of f, there exists § > 0 such
that, for =,y € [0, 1], -

w-yl<s = f@)- )l <3

Using the binomial formula, we have

 fl&) = Ba(fiz) = Z (f(w) ~f (g)) (:)m gy,

fo==0.

Thus

ke

@) = Balfsa) < S

k=0

s -1 (5)| (})era- ) )

where




and:

Sl = Z .
S oskEn

K l:r:-—r~|>6

o <2||fllm ? (Z) b :L,)n ko
o . {k—~’n,:z:)2>n262 b

S Z(k—mﬂ ;';’) ’=<1 ot

. k=0
—mmu—L?ﬁ'

s

- 262

Where we have used the 1dent1ty :

lé(k; n;)z( ) ’“(1_53) | —”‘”(1 —fﬂ) |

Combmmg the’ estlmmtes on El(m) and Yo (), we.oEta.in_

16 = Bl o) < ”;;!“’

Now choose N sufﬁmently large tha.t

il g
952N~
(One may tako N [||f||00/552] +1.) Then

#@) - Bufio)l < 545 =¢,

80 BN( f; :1:) is a polynomla.l smthtymg the wnclusmn of the theorem
: ' [bookwork 15 marks|

(c) 5 i
@) < k};ﬂ (:)

= [l

k=0

/(B

== ‘“- < [ lleo L(Z)mm- s



On the other hand,

whence ||T|| < 1. On the other hand, T(1) = 1, whence ||T| = 1.
' ' {unseen, 6 marks|

'B10. (a) f is continuous if Yimn e [|Zn — || = 0 implies limy o0 f (Zn) =

flz).
7 [bookwork, 2 marks]
(b) A linear functional f on a vector space X is called bounded if there exists
M > 0 such that | f(z)| < M|z| for any z € X.
[bookwork, 2 marks|

() -
Suppose that f is continuous. Assume (for a contradiction) that there is
no M > 0 for which |f{z)} < M||z|, for all z € V. Then we can choose a

sequence z, € V, n > 1, such that |f(z4)] > n||za|, so that

f(; z, )\= FIESIN

A EN| njz.|

g0, by continuity at 0,

f (l—wi) - f{0) =10, asn - o0,
1|l
giving the required contradiction.

Suppose that f is bounded. Given z € X and € > 0, we nocd to show
that there exists § > 0 such that ||z —y|| < § implies that |f(z) — f() <e.
It M =0 then |f(z) — f(¥)| = |f(z ~ y)] = 0, s0 any § will do. If M >0,
choose § = E/M Then, if ||z — y|| <6,

@) = S = 1o =)l < Mllz vl < My =¢

as required.
{bookwork, 15 marks]
(d) Let z = (z1,22,... ), ¥ = (Y1, Y2y - - - ) € £2(R). Then

T AZn +
fQOa+py) =D ————= = Af(z) + pnf(y),
; n+1 _



a contradiction.

.1e f is lmea.r Furthermore

If(:c)i Slal 2%cn_l'-_-:a'|¢_||1_,_,_

| whence f ig" beunded and ||fu < 1. New take z = (1 0, 0 0 ) 'we have
',.f(w)—l whence |[f||—1 o : :

: ‘[srmﬂar to example sheets 6 marks]

‘B‘ll (a) The Speetrum of T is the set of complex numbers

spee(T) ={\eC: (,\I T) X - X 18 not 1nvert1b1e}

[bookwork 2 marks]

(b) Xis an e1genvalue of T is there ex1sts T € X \ {0} such that Tz = Az. 1t

lles in spec(T) because if Al —T" ‘were 1nvert1ble l:herl we would have

= (=T =T = (- 1) 0) =0,

."_['B‘oekwork, 3 marks]



(c) Suppose P has degree n. For a fixed A € C, we can write

/\_P(z)ia(ﬁl_z)(ﬁzmz)”'(ﬁnmz% (*)

where B1,..., Bn € C are the roots of the polynomial z +— A — P(z). We can
then write

A — P(Z) = alfy] — TRl T+ (bl - T)

1f A € spec(P(T)) then Al — P(T) is not invertible, so (I — T') is not

invertible for some i, giving f; € spec(T). Substituting z = f; in (%), we
have A = P(f;): This shows that spec(P(T)) C {P(}) : A € spec(T)}.

Now suppose that A ¢ spec(P(7)). Then (A] — P(T)) is invertible, so

| (B;I —T) is invertible for all 1 = 1,...,n, i.e, {f1,...,u} QOspec(T) = @.

Since the equation A — P(z) = 0 has no other solutions, this shows that
spec( PN N {P(A) : A €spec(T)} = @. This completes the proof.
[bookwork, 10 marks]

(d) We have T?(xy, X9, T3, Za, ... ) = {T1, T2, T3, ... ), L&, T2 = 1. _
' [unseen, 2 marks]

(e) WehaveT(l,O,l,O,l,O,...) = (1,0,1,0,1,0,7. .. yand 7(0,1,0,1,0,...) =
(0,~1,0,—1,0,...), whence both +1 are eigenvalues of T
[unseen, 4 marks|

(f) By (¢) and (d), {0} = spec(T? — I) = {A> ~1: e spec(T)}. Hence
spec(T) C {~1,1}, and by (b) and (e), spec(T) = {— 11}[ —






MATH3\4\61022 Exam and Solutions, 2014-15

Throughout the paper you may assume that the Dirichlet Convolution of
two multiplicative functions is multiplicative.

SECTION A

1. i. Show, by estimating integrals or otherwise, that
N N N

du 1 1 du

— 4+ —< — <1+ —,

[ uc Ncr - ; ne \/1 ue

for real o > 0.

Deduce that the series defining ( (o) diverges for ¢ < 1, converges for
o > 1 and satisfies

for o > 1.

ii. Explain why

for N > 1, where N = {n:pln = p < N}.

iii Prove that

for o > 1.
Deduce that there are infinitely many primes.

You may assume that »_ (—log(1—1/p”) —1/p?) <1 for o > 1.
[30 marks]

Solution i Use
n+1 dt 1 n+1 1
/ < — dt = —.

g T o g
o T n° J, n



Sum over n = 1,2,..., N — 1 to get

dt 1 1
< —.
/1 + NO’ - Z ne

1<n<N

odt 1 " 1
/ R
n—1 a4 n? n—1 n?

Sum over n = 2, ..., N to get

Z 1<1+/th
ne = 10 J, to

1<n<N

Use

Combine to get stated result. Bookwork |9 marks|

It is possible to prove this by Partial Summation which I will accept.

If 0 = 1 the left hand side gives

Z i L—l—logN

NO’
1§n§N

which — 0o as N — oo in which case the series defining ¢ (s) diverges.
[1 mark]

If o # 1 then integrating gives

leo lea_l
—<1 _ .
-0 NU_Z + 1—0

If o <1then1l—o0>0andso N'"7 — oo as N — oo in which case, by
the left hand inequality, the series defining ( (o) diverges.

If o >1then1—0 <0 andso N'"7 — 0 as N — oo in which case, by
the right hand inequality, the series defining ¢ (o) converges. We also get in

the limit
= ne —0o’
equivalent to stated result. [5 marks|
ii .
1Y 1 1 1 1
H(l——o> :H(l—i——g—i-?-i-?—{—z—i-...).
<N p PN p p p p



On multiplying out we get terms 1/n% with integers n composed only of
primes < N, i.e. n € N. Every integer in N will arise by the factorisation
of integers into primes and every integer in N will occur only once by the
unique factorisation on integers into primes. Hence stated result.

Bookwork D marks]

iii. Take the logarithm of part ii to get

(S = (0) )

p<N
1 1 1
= S (e (i) )
pSNp p<N p p

Since o > 1 we can let N — oo to get stated result, having used the assump-
tion in the question.
Bookwork [7 markS]

Combining parts i and iii gives

1 1
> Lz () -1
p° o—1

p

for 0 > 1. Let 0 — 14. The right hand side diverges as thus must the series
on the left hand side. Yet all terms in the series remain finite so there must
be infinitely many terms, i.e. infinitely many primes. Bookwork [3 Marks]



2. i. By Partial Summation prove that for s # 1 we have

1 1 Nt N du
-1 _
Z ns +s—1+1—3 8/1 {u}u5+1

1<n<N

for any integer N > 1.
ii. Deduce that . -
Cls) =1+ — s [y, (1)

s—1 L utts

for Res > 1.
Explain why (1) can be used to define ¢ (s) for complex s with Res > 0,
s # 1.

iii) Using parts i and ii prove that for all complex s with Res > 0, s # 1,
and all integers N > 1,

1 N
c<s>—25+—8_1+o(%).
=1

Deduce that

o0

1
Z nl+it

n=1

diverges for all real ¢t > 0.
[30 marks]

Solution i. By Partial Summation

1<n<N 1<n<N
N N du
= Ns - Z / (_ ) u5+1
1<n<N Y™
N N du
- N + 8/1 ( Z > us L
1<n<u




1 B N N du N du
Z ns ﬁ+s ) uuerl_S . (u_[u])uerl

1<n<N
N 5 N du
= — N5 —1) —s up ——
NS + 1 — s ( ) \Z { } u5+1 )
which rearranges to stated result. Bookwork [11 marks]

ii We have Res > 1s01— 0 < 0. Thus

Nl—o‘
e

Nl—s

— 0as N — oo.
1—s

Also the resulting integral satisfies

/loo {u} duﬁ/loouili:l’ 2)

uerl
i.e. it converges (absolutely). So we can let N — oo to get the stated result

Cls) =1+ s [T Au g, (3)

s—1 ;. ults

for Res > 1. Bookwork [5 marks|

Looking at (2) we see that the integral in fact converges for ¢ > 0. This

is why the right hand side of (3) can be used to define a function on Res > 0
which agrees with the series definition of ¢ (s) on Res > 1.

Bookwork [3 marks|

I require no discussion on analytic continuation or uniqueness.

iii Subtract the last two results to get, for Res > 0

1 Ni=s N du < {u}
¢(s) — Z E:_l—s—i_s/l lup =5 = . u1+sdu’

u

1.e.

(o= 3 LNy,

ns s—1 N u1+8




The integral here is estimated as

sl

<
< sl oN°

1+s

‘s {u—}du
U

> du
N ulto
With s =1 +1t, t > 0, the last result rearranges to

1 - ei(tlogN+7r/2) |t’
D, o =Cti s ————+0 <N> .

1<n<N

Bookwork [7 markS]

As N — oo we get a sequence of partial sums that get ever closer to a circle,
centre ( (1 + it) and radius 1/t, and keep going round the circle without end.
Hence we do not have convergence to a point and so must have divergence.

Bookwork [4 marks]



3. i. Write down the Euler product for the Riemann zeta function  (s).

ii Let w(n) denote the number of distinct prime factors of n. By looking at
the Euler product of the Dirichlet Series on the left hand side of the identity
below, prove that

= ) _ (s
; ns  ((2s)

for Res > 1.

You may assume that 2% s multiplicative.

iii Let A be Liouville’s function, defined as A (n) = (=1)*™, where Q (n) is
the number of prime divisors of n counted with multiplicity. By looking at
the Euler product of the Dirichlet Series on the left hand side of the identity

below, prove that
A () ((2s)
2 T

for Res > 1.
You may assume that X\ is multiplicative.

iv. Explain why parts ii and iii suggest that

2% \ = 1.
Prove this by showing equality on prime powers.
[30 marks]
Solution. i
1\ !
p
p
for Res > 1. Bookwork [2 marks|

ii. Using the fact that 2¢ is multiplicative and 2¢®*) = 2 for all primes p and
a>1,

> ow(n) 2 2 2 2
Y = I+ =4+ —+—=+—0+..].
—~n » p° D P p



Sum the series
2
142y + 22 + 2% + ... = 1+2y(1+y+y2+...)=1+ﬁ
2
I+y 11—y
l—y  (1-y*

Applying this with y = 1/p® gives

by part i. Bookwork |8 marks]

iii Using the fact that A is multiplicative and X (p®) = (—1)* for all primes p

and a > 1,
—~A(n) 11 1
SECI) (RS

ps p2s p35
p
This time each sum is a geometric series,

1 1 1—y
1— - = = :
yry 1—(-y) 1+y 1-y

Hence

Bookwork [8 markS]
iv With Dy (s) :=> 72, f (n)n~*, parts ii and iii give

Daas (5) = Do (5) Da () = £ ot 2 = ¢ () = D 9

for Re s > 1. This suggests 2 « A = 1 (only suggests for we have not proved
that Dy (s) = D, (s) for an appropriate set of s implies f = g.)

Bookwork [3 markS]

Since 2¥, A and thus 2¢ % X are multiplicative

2% A(n) =2 %\ Hpr :H2“’*/\(pr).

prln prlln

8



Yet, by the definition of Dirichlet Convolution,

20 = 3 200 ().
a+b=r
a,b>0

We take out the a = 0 separately for 9w (") — 90 — 1, so

Z 2w (P*) \ (pb) = Ap")+2 Z /\(pb)

a+b=r 0<b<r—1
a,b>0
= (-1)'+2 > (-1’
0<b<r—1

This sum is a finite geometric sum with common ratio —1. Thus

L= (1)

2% A (p) = (=) + 27— )

=1,

as required. Bookwork |9 marks|



4) i. State, without proof, Mdbius Inversion, not forgetting to define all
terms.

ii a. Define Euler’s phi function, ¢.
b. Using Mobius Inversion or otherwise prove that ¢ = p * j, i.e.

o)=Y n(d) 7.

dln

for all n > 1. Here j is the identity function, j (n) = n for all n.
Deduce that

c.
1
¢<n) :nH (1__> )
pln p
for all n > 1.
d.
> 6(d)=n,
din
for all n > 1.

il Prove that

Z@zﬁx—i—O(logw).

n<x

You may assume that 3, . 1/n* = O (1/z) and 3 ., 1/n= 0O (logx).

[30 marks]

n>x

Solution 1 Mo6bius Inversion states that

pwxl=29 or equivalently, Z w(d)=:6(n).

dn

Here 1(n) = 1 for all n > 1 while § (n) = 1 if n = 1, 6 (n) = 0 for all
n>2. Ifn=]]_, p{ is a factorization into distinct primes then the Mobius

function is
(—1)T lf (11:(12:(1,3:...:17
p(n) = .
0 if some a; > 2.

Bookwork [5 markS]

10



ii.a. Euler’s phi function is

1<r<n
ged(r,n)=1

Bookwork []. mark]
b. Rewrite the condition ged (r,n) = 1 in terms of ¢ as
- Y - XY
1<r<n 1<r<n d| ged(r,n)

by Mobius Inversion. Note that d|ged (r,n) if, and only if, d|r and d|n.
Interchange summations to get

= u(d Y 1.

dn 1<r<n
d|r

In the inner sum we can write r = sd, n = md and we are counting the
number of integers s < m, of which there are m = n/d, hence

=S ) =Y u@)i (%) = () (n).
dln

din

Bookwork [6 HlaI‘kS]

c¢) Since p and j are multiplicative then so is ¢. So it suffices to consider,
with » > 1 and prime p,

o) =) @) => n@)i@)=n@")i@)+u@)i@E),

since % (pa) =0 if a > 2. Thus
f r T r—1 r 1

Multiply together to get stated result. Bookwork [4 Marks]
d) By definition of Dirichlet Convolution

Z¢ = (1%¢) (n).

11



Yet

Lxgp = 1x(uxj) by part b
= (Txp)xyj
= 0% by Mobius Inversion

= J since 0 is the identity under =

Hence

Y o) =(1%0)(n) =jn)=n.

dln
Problem Sheet [5 maI“kS]

I'll accept other proofs, i.e. partitioning integers r depending on gcd (7, n)

iii By Part ii b,

d
DR B I ol
d\ﬁf

n<x n<z dn d<z

on interchanging summations. Continuing

-SR-S Grom) -t o ()

d<z d<z d<z

The error here is O (logz) by assumption in question. In the main term
complete the sum up to infinity

pld) _ -~ pld) pld) _ 1
Z 2 _Z 2 _d;c 2 C_ (Zap)‘

d<zx d=1

The error here is O (1/x) by assumption in question. Combining

Zcb?(ln) . <<(12) L0 (i)) +0(log ).

n<x

Keeping only the dominant error term we get the stated result.
Bookwork [9 marks]

12



SECTION B

This Section is Compulsory, answer all parts.

5. i. a) Prove that there exists a constant v such that

1 1
Z—zlogx—i—’y—i—O(—),
n x

n<x
for real x > 1.
b) Explain why this error term is best possible for real x.
c¢) Prove that
Sl logN 4+ =0 (=
no e TN N2)

n<N
for integer N > 1.

You may assume that 1, (z) = [ ({t} —1/2)dt is periodic in x, with
pertod 1.

ii. The Bernoulli polynomials and numbers are defined iteratively by
b, (1’) = k‘/ P4 (t) dt + By, for k > 2,
0

where each B is chosen so that

1
/ Py (t)dt =0,
0
along with P, (z) = {x} —1/2 when = ¢ Z, 0 when z € Z.

a) Find the Fourier Series for Py (z), k > 2,

You may assume that every Py (x) is periodic with period 1 and Py (x)
has Fourier Series — 3, ,€*™"" [ (2inT).

b) Deduce that

(—1)*1 (2m)%
¢(20) = YT

for all ¢ > 1. [45 marks]

B2€7

13



Solution i. a From either Partial Summation or, as here, from Euler Sum-
mation with f (z) = 1/x we have

Z%:/j%ﬂ—{i—}—/f%}dt. (4)

The second integral converges absolutely since

e dt < dt
/ |{t}|t—2<</ t—2<<1.
1 1

Thus we can complete the integral up to oo, the error in doing so is
o dt ° dt 1
< | — < - K -
<[mg< [ <3
Combining,

1 1 o dt

n<x

Hence the result follows with
& dt
== [T
1
Bookwork [8 markS]

b. The error is best possible in that as z moves from N— to N+ (where N
is an integer) we gain a term 1/N on the left hand side, whereas because of
continuity, the main terms on the right hand side vary by almost nothing.
Hence the error term has to accommodate, be no less than, the 1/N. i.e.
approximately 1/x

Bookwork [3 marks]

c. Return to (4) with x = N, and integer. Then

1 N dt

E J— __|_1_
n 1t

n<N

N
W
t2
1

Write

N N N
n _1/ dt / {t}y —1/2
/1 pl=3] 7+ ot

14



The first integral equals

0-3)

For the second integral, integration by parts gives
N N
th—1/2 t
1 t? 1 t3

since 1, (t) is periodic, period 1 so 9y (N) = 1, (0) = 0 for all integers N.

Since 1, is periodicand continuous (being defined by an integral) it is
bounded. Thus the integral in (5) converges, so complete to infinity and
bound the tail end as

wz /dt 1
dt —
/ Sy BSN

Hence . ) )
Zn logN+C+ﬁ+O(N2>, (6)
n<N
for some constant C. Bookwork [12 marks]
From (6)
1 1
- Z_ N - —
¢ = jm (ZN n o 2N>
= lim Z l —log N
o N—oo <N n & v
by Part i.a Bookwork & Problem Sheet [3 marks]

ii. a Since the Bernoulli functions Py (x) are periodic with period 1, they
have a Fourier Series

[e o]

1
Z cn (k) ¥ where ¢, (k) :/ Py (z) e~y
0

n=—oo

From the definition of P, we have ¢y (k) = 0 for all £ > 1.

15



Assume n # 0. From the definition we have P (z) = kP;_1 (x) so inte-
gration by parts gives

1
cn (k) = / Py, (z) e 2™ g
0

e—27rina: 1 k 1 omi
— —P P. —2minz j
[ b () 2min ]0+27T'm/0 b1 (z) e o
k
= (B —1
27rz'nc ( )
Continue,
1\ !
n (k) = k! _ L (1
)=k (5o )
Next, by the given assumption,
P ( ) B Z e27rina: (1) _ 1
1= im0 W T T
n#0
Hence
1 \*
n (k) = —k! .
cn (F) <2m’n>
Thus, for k£ > 1,
P ( ) k[ Z 627rin:):
T)=—
: (2mi)f &2 0t

Bookwork [13 marks]
ii. b. If we set © = 0 and recall P, (0) = By, for k > 2, we get
k! 1

In the sum we group n and —n together. For each such pair n > 0 and —n,
we have

By =

1 1 2
—k—i—( )k =% if k£ even, 0 if k£ is odd.
n -n
Hence,
(20! X1 b, (20)
n=1
This rearranges to the stated result. Bookwork [6 arks]
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Spring Semester 2014—-2015
MATH31072/MATH41072/MATH61072 Algebraic Topology

May /June Examination Solutions

Al. (a) A geometric simplicial surface is a finite set K of triangles in some R" satisfying the
following properties.

(i) The intersection condition: Two triangles in K are either (i) disjoint, (ii) intersect in a
common vertex, or (iii) intersect in a common edge.

(ii) The connectivity condition: For each pair of vertices there is a path along edges from one
to the other.

(iii) The link condition: For each vertex v, the link of the vertex, i.e. the set of edges opposite

v in the triangles containing v, form a simple closed polygon. [5 marks, bookwork]

(b) An orientation of a triangle is a cyclic ordering of the vertices. Two triangles with a common
edge are coherently oriented if the orientations induced on the common edge are opposite. A
simplicial surface is orientable if all of the triangles can be oriented so that each pair of triangles

with a common edge are coherently oriented.
[3 marks, bookwork]

(c) The statement that this is a topological property means that, given two simplicial complexes
K and Ky, if the underlying spaces |K;| and |K3| are homeomorphic, then K is orientable if
and only if K5 is orientable.
[2 marks, bookwork]
[Total: 10 marks]



A2. A geometric simplicial complex is a non-empty finite set K of simplices in some Euclidean
space R™ such that

(i) the face condition: if o € K and 7 < ¢ then 7 € K;

(ii) the intersection condition: if oy and o9 € K then o1 Noy € K and o1 Noy < 071,
o1 MNog < 02.

[2 marks, bookwork]

The underlying space |K| of a simplicial complex K is given by

K|=JocRr"
ceK

with the subspace topology. [1 mark, bookwork]

A realization of the given abstract complex as a geometric complex is as follows.

[2 marks, similar to question set]

The Euler characteristic of a simplicial complex K is given by the alternating sum

() =31y,
r=0
where n, is the number of simplices of dimension 7. [1 mark, bookwork]

In this case, ng =6, n; =8 and ng =1 and so x(K)=6—-8+1=—1.
[1 mark, similar to question set]

The first barycentric subdivision is as follows.

U1 V4 Ve

i\

O
o

0,

XS

XXX XKD
098,99, 0
RRRE
XX
AN
PR
XA
0203
Kt

K>

0%%%%

U3 V2 Us

[2 marks, similar to question set]

This also has Euler characteristic —1 since the Euler characteristic is unchanged by barycentric
subdivision (or because it is a topological invariant and the underlying space is unchanged) [It
can also be found by counting simplices.]. [1 mark, simple application]

[Total: 10 marks]



A3. Forr € Z. the r-chain group of K, denoted C,.(K), is the free abelian group generated by
K,, the set of (non-empty) oriented r-simplices of K subject to the relation o +7 = 0 whenever
o and 7 are the same simplex with the opposite orientations. [2 marks, bookwork]

For each r € Z we define the boundary homomorphism d,: C,(K) — Cr_1(K) on the generators
of C,(K) by

T

dr((vo, 01,5 0p)) = > (=1){vo,v1, .., Dy o)

i=0
and then extend linearly. Here ¥; indicates that this vertex should be omitted.
[2 marks, bookwork]

The kernel of the boundary homomorphism d,: C,(K) — C,_1(K) is called the r-cycle group
of K and is denoted Z,(K). Thus

Z(K) = {a € Co(K) | dv(z) =0}

[1 mark, bookwork]

The image of the boundary homomorphism d,;1: C,41(K) — C,(K) is called the r-boundary
group of K and is denoted B,(K). Thus

BT(K) = {.T € CT(K) | T = dT+1(y) for some Yy e Cr+1(K) }

[1 mark, bookwork]

In the case of K in Question A.2 we can see that

e 71(K) is generated by z1 = (v1, v2) — (v1,v3) + (v2,v3), o = (v1,v2) — (v1,v4) + (v2, v5) —
(v4,v5) and x3 = (vg, v5) — (vg,v6) + (vs, Vg).

e Bj(K) is generated by z7.

[2 marks, similar to questions set|

The kernel of the homomorphism Z;(K) — Z? defined by A\ix1 + Aoza + A3x3 — (Ao, A3) is
generated by z; and so is By(K). Hence by the First Isomorphism Theorem this induces an
isomorphism Hy(K) = Z1(K)/B1(K) = Z2. [2 marks, similar to questions set]
[Total: 10 marks|



A4. (a) The underlying space of K = A® is the 8-simplex A% which is a convex subset of R?
and so is contractible. Hence it has the same homology groups as a point:

Z fori=0,
Hi(K) = { 0 otherwise.

[3 marks, standard example]

(b) For subcomplex L of K, ng =9, ny = (g) = 36, no = (g) =84 and ng = (Z) = 126 and so
the Euler characteristic x(L) =9 — 36 4+ 84 — 126 = —69.

[2 marks, similar to example set]

Now L is 3-dimensional and so and so has trivial homology groups in dimensions above 3. In
dimensions 0 < ¢ < 3, C;(L) = C;(K) with the same boundary homomorphims between these
groups. Hence in dimensions 0 < ¢ < 2, H;(L) = H;(K). However, in dimension 3, B3(L) =0
since Cy(L) = 0 and so H3(L) = Z3(L) a free group of rank f3, the third Betti number of L.
Now using the formula x(L) = Z?ZO(—l)’ﬂZ-(L) we see that —69 = 1 — (3(L) (since p1(L) =
B2(L) = 0) and so B3(L) = 70. Hence

7 for i =0,
H;(L)={ Z™ fori=23,
0 otherwise.

[> marks, similar to example set]
[Total: 10 marks|



B5. The intersection condition is satisfied automatically since the vertices are linearly inde-

pendent. [1 mark]
The connectivity condition is satisfied because (for example) the following edges link all of the
vertices. [1 mark]

6 5 1 2 3 4

*r———¢ — 00— 06—

To—e8

Checking the link condition for v; and vg we find the following:

V2 U3 V4 U1 V4 Vs
Vg Us U7 Ug v U3 Ve V2

These are simple closed polygons. Hence K is a simplicial surface.
[3 marks]

(b) Now identifying edges of the triangles leads to the following polygon with edges to be
identified in pairs as indicated.

; g
Z .
V4 d Ve g a U8
U2 U7
. f
h V1 f U8
V8 Vs U3
g
b e
b
v a4 U8 vg € V4 J Vg

This is represented by the symbol abb~'edefftatghe tii~td~te Th=1g~1 .
[5 marks]
(c) Reducing this symbol to canonical form using the standard algorithm gives the following.

abb tedeffra tghe tii T d e th g Y
~ acdé(a Y (gh)e td e hTig™t  (cancelling zz 1)
~ a(cde)(gh)a™ e td et hTlg™! (since ... aUVa~t.. .~ .. 2VUz™"..)
~ aghed(éa e Nd e h g™ (since ... aUVaT o~ VU7 L)

~ (aea te V) ghedd e hT g™ (since xUx~! commutes with other terms)

1

~ xyz 'y~! (cancelling zz~' and relabelling).

Hence the surface is orientable of genus 1 (the torus).
[5 Marks]
[Total: 15 marks, similar to questions set]



B6. (a) A topological surface is a non-empty Hausdorff second countable topological space
S which is locally planar, i.e. each point x € X lies in an open subset U C X which is
homeomorphic to an open subset of the plane R? with the usual topology.

Suppose that S and S5 are non-empty path-connected topological surfaces. Choose subspaces
Vi € Sy and V, C S2 which are homeomorphic to the open disc B1(0) C R2 by homeomorphisms

¢i: B1(0) = V; fori=1andi=2

We form the connected sum S1#5% by removing the interiors of smaller discs, i.e. gbz( 1/2 (O))
and gluing along the boundary circles. More precisely, it is the quotient space of the disjoint

union o [(Sl B ¢1(B%/2(0))) (SQ — ¢2(B 1/2 ﬂ /N

where ¢1(u) ~ ¢o(u) for u € B?(0) with |u| = 1/2.

[5 marks]
(b) A triangulation of a path-connected compact surface S is a homeomorphism h: |K| — S
where | K| is the underlying space of a simplicial surface K.

Given such a triangulation of a surface S, then the Euler characteristic of S, x(.5), is defined
by x(S) = v — e+ f where v is the number of vertices in K, e is the number of edges in K and
f is the number of triangles in K. This can be shown to be a topological invariant.

[3 marks]

(c) Suppose that S; and Sy are two such surfaces with |K;| = S; and |K»| = Sy then we can
form K such that |K| 2 S1#S5 by removing a triangle from each of K7 and Ky and identifying
the corresponding edges and vertices of these two triangles. Then f = fi; + fo —2 (two triangles
removed), e = e; + ez — 3 (three pairs identified), v = v1 + v2 — 3 (three pairs identified). Thus
X(K) = (v1+va=3)=(e1+ea=3)+(f1+/2—2) = (nn—e1+f1)+(va—ea+f2)—2 = x(51)+x(S52) -
X(8%) = 2.
Hence, by induction on g, x(7,) = 2 — 2g since x(T1) = 0 and, for k > 1, if the result holds for
g=Fk, x(Tx) = 2—2k and so x(Tx+1) = x(Tx#T1) = (2—2k)+0—2=2—2(k+1) and so the
result holds for ¢ = k + 1.
Similarly, x(Py) = 2—g since x(P1) = 1 and, for k > 1, if the result holds for g = k, x(Px) = 2—k
and so X(Py11) = xX(Pe#P1) = (2—k)+1—-2=2—(k+1) and so the result holds for g = k+ 1.
[5 marks]

(d) The Euler characteristic is used in the proof of the classification theorem to help distinguish
the spaces in the list.

The Euler characteristic shows that the surfaces T, for g > 1 are all topologically distinct from
each other and from S?, and the surfaces P, for g > 1 are all topologically distinct from each
other and from S2. However, for even numbers 2 —2k (k > 0) there are two surfaces in the list,
Ty and Pyj, with this Euler characteristic.
[2 marks]
[Total: 15 marks|
[This is a summary of coursework but requires the student to have a good overview
of the first three sections of the course. The inductive proof in (c) was left as an
exercise.|



B7. Write v; for the ith standard basis vector in R1°, 1 < i < 9. Let K be the set of 2-simplices
(vi,vj, vg) where (4, j, k) are the vertices of a triangle in the triangulation of the unit square I*
shown below together with their faces. Then K is a simplicial complex with underlying space
| K| homeomorphic to the projective plane.

1 2 3 4

) 6 ‘ 8
8 9,710 5
4 3 2 1

The intersection condition is automatic since the vertices are linearly independent vectors and
the face condition is automatic by definition.

Now we can define a continuous function f: I? — |K| by mapping the point 7 in the unit square
(in the above picture) by i — v; and extending linearly over each triangle. This is continuous
by the Gluing Lemma (since the triangles are all closed subsets of I?) and induces a continuous
bijection F': I?/~ — |K| which is therefore a homeomorphism where ~ is the equivalence
relation given by (s,0) ~ (s —1,1) and (0,¢) ~ (1,1 — ¢) which is known to give the projective
plane.

[6 marks, similar to bookwork]

Since K is clearly connected Ho(K) = Z and since K is 2-dimensional H;(K) = 0 for ¢ > 2 and
1< 0.

To find Z;(K) notice that if z € Z;(K) then x ~ 2/ where 2’ only involves edges corresponding
to the edges of the template together with three ‘internal’ edges, say (vs,vg), (v7,vs) and
(v2,v10). Since other edges can be eliminated. For example (va,vs) ~ (v1,vs) — (v1,v2) since
da(v1,v2,v5) = (vg,v5) — (v1,v5) + (v1,v2) ~ 0. However, since z € Z1(K), 2’ € Z1(K) and so
2’/ cannot involve these internal edges since they have vertices which would cancel out on taking
the boundary.

Considering the edges corresponding the boundary of the template we see that the cycles con-
taining these edge are generated by

xr = <1}1,1)2> + <U2,v3> + <’l)3,’l}4> + <U4,Ug> — <’U5,’U8> — <1}1,1}5>.

Let V' be the subgroup of C}(K) generated by z. Then Z;(K) =V + B1(K).
Hence Hi(K) = Z1(K)/Bi(K) = (B1(K) + V)/B1(K) = V/(V N B1(K)) by the Second
Isomorphism Theorem.
If da(z) € V then z must be a multiple of y = (v1,v2,v5) + ... (all the 2-simplices oriented
clockwise). But da(y) = 2z. Hence V N By(K) = Z generated by 2x. Hence H(K) = Zs
generated by [z].
For z € Z3(K), z must be a multiple of y but since da(y) # 0 if follows that Zo(K) = 0 and
Hy(K) =0.

Z fori=0,
Conclusion; H;(K) = Zo fori=1, [9 marks, example set]

0  otherwise.

[Total: 15 marks]



B8. (a) Two continuous functions of topological spaces fo: X — Y and fi: X — Y are
homotopic, written fy ~ fy, if there is a continuous map H: X x I — Y such that H(z,0) =
fo(x) and H(z,1) = fi(z). We call H a homotopy between fy and f; and write H: fo ~
fi: X =Y. [2 marks, bookwork]

There are three conditions for an equivalence relation.

reflexivity: Given a continuous function f: X — Y then f ~ f. A homotopy is given by

H(z,t) = f(x).

symmetry: Given homotopic functions fy ~ fi1: X — Y then f; ~ fy. Given a homotopy
H: fo~ fi then a homotopy K : fi ~ fy is given by K(x,t) = H(z,1 —t).

transitivity: Given homotopic functions fy ~ f1: X — Y and f; ~ fo: X — Y then fy ~
fo: X — Y. Given homotopies H: fy ~ f; and K: fi >~ fo then a homotopy L: fo ~ fo is
given by

| H(z,2t) for 0 <t <1/2,
Lw,t) = { K(z,2t—1) for1/2<t< 1.

This is well-defined since H(z,1) = fi(x) = K(z,0) and is continuous by the Gluing Lemma.

Hence homotopy is an equivalence relation. [5 marks, exercise set]

(b) A continuous function f: X — Y is a homotopy equivalence when there it has a homotopy
inverse g: Y — X which means that go f ~ Ix: X — X, the identity map, and fog ~
Iy:Y — Y. In this case we say that X and Y are homotopy equivalent spaces and denote this
by X =Y (or sometimes X ~Y). [3 marks, bookwork]

Suppose that X and Y are homotopy equivalent spaces with maps as above. Suppose that X
is path-connected. To see that Y is path-connected, let yp, y1 € Y. Then since X is path-
connected there is a path o: [0,1] — X from ¢(yo) to g(y1). Hence foo:[0,1] = Y is a path
inY from f(g(yo)) to f(g(y1))-

Let H: fog~ Iy. Then oo(t) = H(yo,t) gives a path in Y from f(g(yo)) to yo and o1 (t) =
H(y1,t) gives a path in Y from f(g(y1)) to yi. The product of the three paths g (reverse
path), o and o1 gives a path in Y from yo to y;. Hence Y is path-connected.

In just the same way, reversing the roles of f and g, if Y is path-connected then so is X

[5 marks, similar to example set]
[Total: 15 marks]



C9. (a) A p-symmetry of a topological surface S is a homeomorphism f: S — S such that
fP=fo---of =1, the identity, and f # 1.
A fized point of a p-symmetry f: S — S is a point « € S such that f(x) = x.
Let f: S2 — S? be a rotation about a diameter through an angle 27 /p. This is a p-symmetry
with two fixed points (at the ends of the diameter). The map f induces F: P? = S?/(z ~
+z) — P? with one fixed point.

[5 marks, bookwork]

(b) Let U be an open set as in the question. Since S is a surface there is a closed set 41 C U
such that A; = D?. Choose a closed set Ay C P? such that Ay = D2. Then we can form
S' = S#P, as the connected sum of S with p copies of P? by removing the interiors of the
sets f{(A1), 0 <i < p—1, from S, taking p copies of P? with the interior of Ay removed and
identifying the boundary circles. Then the p-symmetry f: S — S extends to a p-symmetry
'+ 8" — S’ which cyclically permutes the p projective planes. Since f is free so is f’.

[> marks, problem set, similar to bookwork]

(c) We have shown that P? = P; has a p-symmetry with one fixed point. So, if p divides g — 1,
then g — 1 = pr, for some r and so g = 1 + pr. So applying the above result r times gives a
p-symmetry on P, with a single fixed point.

[3 marks, problem set, similar to bookwork]

(d) Suppose that f: S — S is a p-symmetry on a closed surface S with a single fixed point a.
The we can define an equivalence relation on S by z ~ fi(z) for all x € S, i > 0. The quotient
space S’ = S/~ is also a closed surface. In this case, under the quotient map ¢: S — S, each
point of S’ has precisely p preimages apart from the point [a] = {a} € S’ which has only one
preimage. Choose a triangulation |K'| = S’ so that the the point [a] = {a} € S’ corresponds
to a vertex of K’. Then using the quotient map ¢ we can construct a simplicial surface K
such that |K| 2 S in such a way that the map |K| — |K'| corresponding to ¢ maps vertices to
vertices, edges to edges and triangles to triangles. Hence v(K) = pv(k’) — (p — 1) (because of
each vertex of K’ corresponds to p vertices of K apart from [a] which corresponds to a single
vertex of K), e(K) = pe(K') and f(K) =pf(K'). Hence x(K) = px(K') — (p — 1).
Now, if S = P,, x(K) =2—g and so 2— g = p(x(K') — 1) + 1 which gives g — 1 = p(1 — x(K"))
so that p divides g — 1 as required.
[7 marks, problem set, similar to bookwork]
[Total: 20 marks|



C10. (a) Suppose that the triangulation has e edges and f triangles. Then we know the
following.

(i) v—e+ f = x (from the definition of the Euler characteristic).

(ii)) e < v(v —1)/2 (since the maximum number of edges has every pair of vertices joined by
an edge).

(iii) 2e = 3f (since each triangle has three edges and each edge is an edge of two triangles).

Then x =v—e+ f (by (1)) =v—e/3 (by (iii)) = v—v(v—1)/6 (by (ii)) = (7v —v?)/6. Hence
v? — Tv +6x > 0.
Let the roots of the equation v? —Tv+6Y = 0 be v; < vy. Then v? —Tv+6x = (v—v1)(v—1v2) >
0 < v < v or v > vy From the usual formula the roots are given by (7 + /49 — 24x) /2 and
sov = (T+ 49 —24x)/2 or v < (7 — /49 — 24x)/2.
Since v > 3 (a triangulation includes at least one triangle), if v < (7 — /49 — 24x)/2, 3 <
(7— V49 — 24x) /2 which gives y > 2 and so y = 2 (since the Euler characteristic of a surface is
at most 2. This gives v < 3 and so v = 3 which means that e = 3 and f = 2. This corresponds
to two triangles with the same edges and vertices which would violate the intersection condition.
So this case does not arise and we must have v > (7 + /49 — 24x)/2, as required.
[12 marks|
(b) If v = (7 — /49 + 24x) /2 then v? — Tv + 6x = 0 and so (using the equation y = v —e/3
obtained above) e = v(v — 1)/2 which means that there is an edge between each pair of vertices
and so the 1-skeleton of the triangulation must be the complete graph on v vertices.
[3 marks]
[Total; 15 marks]

[These proofs were outlined in the notes with details left as exercises.]
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C11. (a) A triangulable pair of spaces (X, A) is a topological space X with a subspace A such
that there is a homeomorphism h: X — |K]|, the underlying space of a simplicial complex K,
with h(A) = |L| the underlying space of a subcomplex L of K. [1 mark, bookwork]

A reduced homology theory assigns to each non-empty triangulable space X a sequence of
groups Hy(X) (for n € Z) and for each continuous map of triangulable spaces f: X — Y a
sequence of homomorphisms f,: H,(X) — H,(Y) such that

(i) for continuous functions f: X — Y and g: Y — Z, g. o fu = (g o f)s: Ho(X) = H,(Z)
for all n;

(i) for the identity map I: X — X, I, = I': H,(X) — H,(X) the identity map for all n;
(iii) [homotopy axiom] for homotopic maps f ~ g: X = Y, f, = g.: H,(X) — H,(Y) for all
n;
(v) [exactness axiom] for any triangulable pair (X, A) there are boundary homomorphisms
0: Hy(X/A) — Hp,—1(A) for all n which fit into a long exact sequence
oo Ho(A) S (X)) S Hoy(X/A) S Hy 1 (A) — ..
and such that for any continuous function of triangulable pairs f: (X, A) — (Y, B) in-
ducing a map of quotient spaces f: X/A — Y/B the following diagram commutes for all
n;
- fe -
Hy(X/A) — Hn(Y/B)
0 0

L, 1(A) L 7, ()
(vi) [dimension axiom] Hy(S°) 2 Z and H,,(S°) = 0 for all n # 0.

[7 marks, bookwork]
(c) Suppose that f: X — Y is a homotopy equivalence with homotopy inverse g: ¥ — X. Then

g« o fo=(go f)s (using (1)) = I, (using (iii)) = I: H,(X) — H,(X) (by (ii))

and similarly f, 0 g,: I: H,(Y) — Hy,(X) so that f,: H,(X) — H,(Y) is an isomorphism.
[2 marks, exercise set]
(d) Now conmsider the pair (D", S"~1) for which D"/S"~! = §" Then the exactness axiom
gives the long exact sequence
o Hy(D™ S Hi(S™) S Hi(S™Y S Hy (D).

The space D™ is contractible (homotopy equivalent to a point) and so by the above all of
its homology groups are trivial. Hence from this exact sequence we see that the boundary
homomorphisms

0: E[Z(Sn) — ﬁi_l(Sn_l)
are all isomorphisms. Hence, iterating these maps and using the dimension axiom we see that

H;(S™) = H;_,(5°) = Z for i = n, 0 for i # n.

[5 marks, exercise set]
[Total: 15 marks|

pje\teaching\MATH41072\jun15sol.tex 6 March 2015
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Solutions
1

(1a) (34+2+3).

Riemannian metric G' on n-dimensional manifold M" defines for every point p € M
the scalar product of tangent vectors in the tangent space T, M smoothly depending on
the point p. It means that in every coordinate system (z!,...,2") a metric G = g;pdz’da”
is defined by a matrix valued function g;x(x) (i =1,...,n;k = 1,...n) such that for any
two vectors A = A* (az)%, B = B(x) 82“ tangent to the manifold M at the point p with

coordinates z = (z',2%,...,2") (A,B € T, M) the scalar product is equal to:

(A,B)a|, = G(A,B)| | = A'(2)ga(2) B ().

where
1. G(A,B) =G(B,A), i.e. gir(r) = gri(x) (symmetricity condition)
2. G(A,A) > 0if A0, ic.
gir(x)uiuk >0, gip(z)u'u* = 0 iff ul = ... = u™ = 0 (positive-definiteness)
3. G(A,B)‘p:w,i.e. gik(x) are smooth functions. N

For arbitrary x and arbitrary index i, ¢ = 1,...,n consider non-zero vector A € T, M
such that its i-th component A® = 1 and all other components are equal to zero. The
positive-definiteness condition means that G(A, A) = Alg;p A* = g;; > 0.

The length of the vector X = 8, + td, # 0 is equal to G(X,X) =2+t + 12 > 0 due
to positive-definitness. We see that t> + ¢ +¢* = (t+ )2 + (¢ — 1) > 0 for all t. Hence
c>1

4(lb) (2+2) n-dimensional Riemannian manifold (M, G) is locally Euclidean Rieman-
nian manifold, if for every point p € M there exists an open neighboorhood D (domain)
containing this point, p € D such that D is isometric to a domain in Euclidean plane, i.e.
in a vicinity of every point p there exist local coordinates u!, ..., u" such that Riemannian
metric G in these coordinates has an appearance

G = du';du® = (du')® + ...+ (du™)?.

For cylindrical surface x2 + y? = 4 consider parametrisation z = 2 cos ,y = 2sin ¢, z = h.
Then induced Riemannian metric is G = (dz2+dy?+d2z?) ;=2 cos oy=2sin p,z—h = 4dp®+dh?.
In a vicinity of every point one can consider new coordinates u = h,v = 2¢ then du?+dv? =
dh? + 4dyp?. We see that in coordinates u, v metric is Euclidean. Hence surface of cylinder
as Riemannian manifold with induced Rimeannian metric is locally Euclidean.

(1c) (2434142) A volume form on a Riemannian manifold M™ with metric G =
gipdridz® is \/det gdatdx? ... dz™ .

1
ey 0
. . . 2 gy TF22152)2
For Riemannian metric G = %, det G = det ( (1+z 0+y ) 1 ) - WI
(1+$2+y2)2

Hence the area of a domain is equal to

1
/ Vdet Gdxdy = / Sdzdy =
2 +y2<a?

224y2<a? (1 + 22 + yQ)

1



/ / ——rdrdy = 27?/ ———rdr = 7r/ — —du=—7 ‘ —7x(1—
r<a J0 (1+T2)2 r<a (1+T2)2 u<a? (1+U)2 14w 0 1+a

Taking a — oo we see that S, = = <1 — ﬁ) —

Area of all the plane is equal to 7. on the other hand the area of Euclidean plane with
standard Euclidean metric is equal to infinity. Hence they are not isometric.

2

(2a) (2+1+3).

Affine connection on M is the operation V which assigns to every vector field X a
linear map Vx on the space of vector fields: Vx (AY + puZ) = AVxY +uVxZ (A € R),
which satisfies the following additional conditions:

1. For arbitrary (smooth) functions f,g on M

Vixtgy (Z) = fVx (Z) + gVv (Z) (C(M)-linearity)
2 For arbitrary function f
Vx (fY) = (fo) Y + fVx (Y) (Leibnitz rule)

(Vx f is just usual derivative of a function f along vector field: Vx f = dxf.) N

Canonical flat connection V" is a connection which Christoffel symbols vanish in
Cartesian coordinates.

. Oz or  Oyor
T 9.9 a.. + -5 =0
or2 0x  0r? dy

since z,, = yrr = 0 and

0%x or 0%y Or T T

g = —TCOSQY: ——= —TCOSp - ——== = —T,
/12 +y2

0 on 950y VAR

(2b) (3+3). Let M be a surface embedded in E3. Let Veafat he canonical flat
connection in E3 (It is defined by the condition that its Christoffel symbols vanish in
Cartesian coordinates on E3: vgnflaty — x ‘985; - azim') The induced connection VM) ig
defined in the following way: for arbitrary vector fields X,Y tangent to the surface M,
VXY equals to the projection on the tangent space of the vector field Vggn-ﬂatY:

M o n.flat
vX Y = (vgét ’ Y)tangent ’
where Atangent is a projection of the vector A attached at the point of the surface on the
tangent space: Aqangent = A — A |, where A| = n(A,n). (n is normal unit vector field
to the surface.)



1 0
For saddle 9, =r, =0 ]|,0,=r,=| 1 |,
v u
Calculate VM9, V29, VM9, VMo, at the point u =v = 0.
vgjnﬁatau = Ty, = ng“'ﬁatﬁu = ry, = 0 hence its projection on the surface also
vanishes. Thus we see that VM9, = VM9, = 0 (at all points of saddle)

0
ngn'ﬂat@v = vgjnﬁatau =1y, = | 0 |. This vector is orthogonal to vectors r,
1
1 0
and r, at the point u = v = 0: Jylu=v=0 = | 0 |, Ovju=v=0 = ro, = | 1 |. Hence its
0 0

projection on M vanishes: VM9,, VM9, = 0 too.

(2¢) (2+3+3). Let M be a Riemannian manifold with metric G = g;pdz’dz*.
Christoffel symbols of Levi-Civita connection have the following appearance:

1) = 507" ) (2] 4 i) 2000 )
(1 0 1 (1 0.
WehavethatG—(O u)’G —(0 %),

1
T, = 20" (<003

These coordinates look like ‘polar coordinates’ one can consider new coordinates v’ =
ucosv,v’ = usinv and du’? +dv'? = du?+dv?. In these new coordinates due to Levi-Civita
formula Chrsitoffel symbols vanish.

3

(3a) (24+2+3). 4 '

A geodesic on Riemannian manifold M is a parameterised curve ' = z'(t) such that
velocity vector is covariantly constant with respect to parallel transport along the curve.

We say that vector is covariantly constant on the curve if it remains parallel at all the
points of the curve.

Parallel transport is defined with respect to the Levi-Civita connection of the Rie-
mannian manifold. This means that
Vv dui(t)

Vv = S = S ok (0, (0 ()™ () = 0, where vi(e) = 450, (2)

where I'}, . is Levi-Civita connection.

Consider cylindrical surface r(p,h): * = acos,y = asing,z = h. Induced Rie-
mannian metric is G = dh? + a?dp?. The Christoffel symbols of Levi-Civita connection

3



in coordinates (h, ) obviously vanish. The differential equation for geodesics becomes:

% =0, % =01i.e. o(t) =@+ Qt and h = hy + v't. This is equations of the helix.

In the case v = 0 helix becomes the circle. In the case if {2 = 0, helix becomes vertical line.

(3b) (1+1+43+4+3)) A Lagrangian L of the "free” particle on Riemannian manifold
with metric G = g;rdx’dx” is a function on tangent vectors which is expressed via metric
in the following way: L(z,i) = Sgix(z)a'@".

Euler-Lagrange second order differential equations % = d ( axz) for the Lagrangian

L(z,%) of the "free” particle on the Riemannian manifold are equivalent to the second
order differential equations (2) for parameterised geodesics for this Riemannian manifold.

. . . . 2 9‘2+S. 2 0 .2
Euler-Lagrange equations for Lagrangian of free particle on the sphere L = R —”;‘ﬂl
are:

oL d oL . . . .
% =0= prE Ea 7 (R sin 090) R?sin? 0p—2R%*sinf cos 00y i.e. @+2cotand fp = 0 ,I
oL d 0L -
%:RZSichosOgb2 pTY —R29 ' 6 —sinf cosfp* = 0.
Comparmg these equations with equations for geodesics: - xkFZ i =0 (i = 1,2,
2t = 0,22 = ) we come to
r2,=T§ =0,I% =Ty = cotand, gy =T, =T = 0,I'7, = —sinfcos. -
The first Euler-Lagrange equation for geodesic, g—fa =0 = %g—fb = % (R2 sin? Hgb)

implies that sin? f¢ is integral of motion, i.e. it is preserved on geodesics.

(3¢) (5).

Since semicircle C' is geodesic and vector Xy = 0, is tangent to C, i.e. it is propor-
tional to velocity vector at the point A, then during parallel transport vector X(¢) remains
proportional to velocity vector. Velocity vector at the point B. is orthogonal to vector
(1,4/3). Hence it is proportional to radius-vector v/39,, — 8, (Lobachevsky metric is confor-
mally Euclidean hence orthogonality is the same). We see that vector X; attached at the
point B is proportional to vector v/39, — Oy, X1 = k(v/3,—k). On the other hand during
parallel transport its length is not changed, since the connection is Levi-Civita connection.
We have

(X0, X0)a = (0g,0rx)a = —

3k2 + k2 4k2

(X1,X1)p = (kV/30x — kO, k30, — 0,) 2 3

We have 3= = 1 hence k = i and X; = g’(\/gw — 0y).

4

1
4

4



2cos —2hsin @
4a (24-3+3). Perform calculations for cone ry, = | 2sing |, r, = | 2hcosep
1 0

2cosp —sing
We take e = - = L | 2sing | and f = ﬁ:—i‘ = | cosep |. Vectors e, f are unit

lenl V5
1 0
tangent vectors and they are orthogonal to each other.
2cos —sinp —Ccos
The vectorn = exf = \/Lg 2sing | x| cosp | = \/Lg —sin¢ | is a unit vector

1 0 1
which is orthogonal to the cone.
Calculate in derivation formulae de and dn and expand this vector-valued 1-form over e, f:

cos 1 —sinp

dp
de=—=d| sing | =—= | cosep |dp=—F=f,
V3 el BV W V5

—Ccos 1 sin

de
dn= —=d | —sinp | = —= | —cosp | dp=——F=f.
VZR R B3 W V5
We see that 1-form a = fl/—%, b= 0 and 1-form —c = —% Hence a = c = il/“i, b=0.

Let S be the shape (Weingarten) operator: SX = —dxn for an arbitrary tangent
vector X. From the derivation equation dn = _Tf it follows that SX = —dn(X) =
%\/?)f . In particularly it means that for basic vectors e, f we have

dp(e) 1 < T, ) o(f ) 1 r 1
Se = fo Lo (F) oo gp= e 1, (i):—.
TN VG G
0 0
A matrix of the shape operator in the basis {e, f} is <O 1 ) Hence Gaussian curvature
h/5

equals to zero and mean curvature H = TrS = WE'

4b (343) Let X,Y,Z be an arbitrary vector fields on the manifold equipped with
affine connection V. Consider the operation which assigns to the vector fields X,Y and Z
the new vector field: R(X,Y)Z = (VXVY — Vv Vx — V[x,y}) Z. One can show that it
is C°°(M)-linear operation with respect to vector fields X, Y and Z, i.e. for an arbitrary
functions f,g,h, R(fX,9Y)(hZ) = fghR(X,Y)Z. Thus it it defines the tensor field of

the type (:1))) If X = X'0;,X = X°0;, X = X'0; then

R(X,Y)Z = R(X"0m,Y"0,)(270,) = Z"R!

rmn

Xmy™"

where we denote by R the components of the tensor R in the coordinate basis 0;

R0, = R(Om, 0n) 0. This(l

3

o ) tensor field is called curvature tensor of the connection



The surface of cylindre in E? is locally Euclidean, induced Riemannian metric is
dh? + a?dp?, hence the Levi-Civita connection of the Riemannian metric has vanishing
Christoffel symbols in coordinates (h, varphi). This implies that Riemann curvature tensor
is equal to zero.

4c (3+43) Let M be a surface in Euclidean space E3. Let C be a closed curve C' on
M such that C'is a boundary of a compact oriented domain D C M. Consider the parallel
transport of an arbitrary tangent vector along the closed curve C. As a result of parallel
transport along this closed curve any tangent vector rotates through the angle

L= (X,ReX) :/ Kdo,
D

where K is the Gaussian curvature and do = /det gdudv is the area element induced by
the Riemannian metric on the surface M, i.e. do = /det gdudv.

The circle C' is a boundary of the sphere segment of the height H. The area of this

domain is equal to 2w Rh. The Gaussian curvature of sphere iis equal to Ig%:l . Hence due to

27 R
=5 -

Theorem we see that vector X through parallel transport rotates on the angle K.S =
5 (for students who earn 15 credits)
5a (347).
A vector field K on Riemannian manifold M. induces infinitesimal diffeomorphism
Fg:2' =2’ 4+ eX(z), (€2 = 0).
We say that K is infinitesimal isometry if this diffeomorphism is an isometry, i.e.
Fi;G = G. In local coordinates the condition that K is Killing vector fields reads as:

0gir () n OK"(z) OK"(x)

LxkG =0, iegy(zr)=K"(z) D D7 gri(x) + ng-(x) .

for K = Ki(x)%G = gix(z)dxidz®

Let K be Killing vector field, and V be Levi-Civita connection. Killing vector field
does not change metric and respectively the corresponding Lev—Civita connection:

LxG =0 ie VXY, 0x(X,Y)=(LxX,Y)+ (X, LKY) (5.1a)
(invariance of metric with respect to infinitesimal isometry),and
vX,Y, Ok <X, Y> = <VKX, Y> + <X, VKY> (51b)

(invariance of Levi-Civita connection with respect to metric)
Substracting the first relation from the second one we will come to the equation:

vX,Y, <(VK — [,K)X,Y> + <X, (VK — ,CK)Y> =0 (5.16)

Notice that the condition (5.1c) is equivalent to the condition (5.1a) provided that V is
the Levi-Civita condition.



The operator A(X) = VkX — Lk X is linear operator on tangent vectors:
A(fX) = [VEX + (0 )X = (O /)X = fLxX = fA(X).

The condition (5.1c) means that this lienar operator is antisymmetric (with respect to
metric G):
VXY, (Ak(X),Y)+ (X, Ak(Y))=0. (5.1d)

We have that

A(X) =VX-—-LX = (VKX — VxK) +VxK — [K,X]

[K,X]+5 (K, X)

Since V is the Levi-Civita connection, it is symmetric, i.e. torsion tensor S identically
vanishes. We see that if V is Levi-Civita condition, then K is Killing if and only if the
operator Ak (X) = VxK is antisymmetric.

Rewrite the condition (5.1d) in local coordinates {x*}: for any basic vectors %im, 89%
we have

0= (A (0m),0n) + (Om, Ak (0n)) = (Vi (K'0;),0n) + (O, Vi (K“0;)),

le.
(O K"+ K'T., ) gin + (m <> n) =0, (5.1e)
where T, are Christoffel symbols of Levi-Civita connection.

5b (4+3+3) Let 2* are standard coordinates in E". Metric in these coordinates is
G = dz'd;pdz®. Chrstophel symbols vanish and equation (5.1e) becomes:

OK'(z) OKP(x)
— " 0in+ —F——0im =0,
ox™ + ox™
i.e. ' i
OK" 0K
(), OK*w)
Oxk oxt
Solve this equation. Differentiating by x we come to
PKi(z) OKFz)
dx™Oxk ~ Qx™Ox
Consider tensor field .
i 0’K'
mE T Grm gk
We see that
mk = LTem = —Tif; -

7



It is easy to see that this implies that 7% , = O!l!:

i

mk — ~ tik __Tk:i _Tmz_sz__Tkm__ka:ka_ .

. 271
We see that T, , = 9K (2) 0, i.e.

Ox™ dxk
Ki(z) = C"+ B z"
where C* are arbitrary constants and B} is an arbitrary antisymmetrical matrix.

Calculate the dimension k(E™) of the space of Killing vector fields for E™. The space
of constant vectors C" has dimension n and a space of n X n antisymmetrical matrices has
dimension "*Z=". Hence

. nn—1) n(n+1)
K(E™) =n+ 5 = 5

We know that for arbitary 2-dimensional manifold, k(M) < 3.

Consider M;-sphere in E3 and M, cylindrical surface. Rotations of E3 define three
independent Kllling vector fields on sphere.; x(5?) = 3, its Gaussian curvature K = %.
Cylindrical surface is locally Eucliean: G = dh? = a?dp?*dh? + du® (u = ag), hence in
a vicinity of every points there are three independent vector fields which preserve metric
locally:

ah, 6u = a&p, h@u — u@h

We see that the third vector field is not defined globally: since the angle ¢ is not one-valued
function. There two lienar independent vector fields on cylindre: 0 and 0, kK = 2.

Every question is worth 20 marks
The marks for every subquestions are indicated above in the text of solutions.

Bookwork
First question : (al) —3 (b1) —2+2 (cl)—2 3+4+2=9
Second question :  (al,a2) —2+1 (b1) — 3 (cl)—2 3+3+2=38
Third question : (al,a2)2+2  (b1,02,63)1 +1+3 44+5=9
Fourth question : (al,a3) —2+3 (b1) — 3 c(l)-3 5+34+3=12
Fifth question : a— 10 bl —4 10+4=14

Easy questions

First question : (a2) — 1 c(1)2 24+2=4
Second question (al,a2) — 3+ 2 3+2=5
Third question  (al,2) —2+2 b(1,2)1+1 24+2+1+1=6
Fourth question (al) —2 1+3+2=6



First question

Second question
Third question
Fourth question
Fifth question

Difficult or unseen questions

a(3) — 2difficult and partly unseen
¢(3) — 3 (not very difficult but unusual)
¢ — 5 (this is little bit difficult)
b(2) — 4unseen but not difficult
b2,b3 — 3 + 3 unseen in this framework (b3 is difficult and unseen in this variation)



MATH32012 SOLUTIONS
SECTION A

Answer ALL questions in this section (40 marks in total)

A1. The polynomials f = X*—Y +1,g=Y +Z%+1, h = YZ+ Z generate the ideal I of Q[X,Y, Z].

(a)

A2,

Find a Grobner basis of I with respect to the lexicographic order Lex with X > Y > Z.

Answer. [routine, 10 marks]

Buchberger’s algorithm. Start with f = X* —Y 4+ 1, g=Y +2*°+1, h=YZ+Z. We
double-underline leading monomials with respect to Lex.

The leading monomials of f and g are relatively prime so S(f, g) — 0. Same applies to f and h,
so S(f,h) = 0. One has S(g,h) = Z(Y + Z>+1) — (YZ + Z) = Z3, reduced mod {f, g, h}.

The leading monomials of f, g and Z* are pairwise relatively prime, so S(f, Z*), S(g, Z*) — 0.

Sh,Z23)=7Z*YZ+Z)-Y (2% = 73 2% (). There are no more S-polynomials to compute.
A Grobner basis is {f, g, h, Z3}.

Find the reduced Grobner basis of 1.

Answer. [routine, 3 marks]
The polynomial h =Y Z + 7 is redundant as Imh = Y Z is divisible by Im g = Y. Delete h.
The polynomial f = X*—Y +1is not reduced mod g =Y + 22 +1: f L (X*—Y +1)+Y +
Z2+1=X*+22+2.

The reduced Grébner basis is {X*+ Z%+2, Y + Z% + 1, Z*}.

Is the variety V(I) C Q3 non-empty? Justify your answer.

Answer. [unseen, 2 marks]

The ideal I contains the polynomial X* + Z2 + 2 which is strictly positive on Q3 so V(I) = @.
(The same can be easily arrived at by looking at the original polynomials f, g, h.)

[15 marks]

Give a definition of a noetherian ring.

Answer. [bookwork, 2 marks]
A noetherian ring is a ring where every ideal is finitely generated.

Is it true that every subring of every noetherian ring is noetherian? Justify your answer briefly.

Answer. [seen in class, 2 marks]

No: there is a non-noetherian domain R, e.g., R = Q[X, X5, .. ], the “polynomial ring” in
infinitely many variables. Then R is a subring of its field of fractions, Fr(R), a noetherian ring.

Give a definition of a euclidean norm and a euclidean ring. Briefly state a reason why a
euclidean ring is noetherian.

Answer. [bookwork/straightforward, 3 marks]

1of6 P.T.O.



MATH32012 SOLUTIONS

A euclidean norm on a ring R is a function N: R — N such that for all a,b € R\ {0}, there
exists ¢ € R such that a = ¢gb or N(a — ¢b) < N(b). A ring with a euclidean norm is called a
euclidean ring. It is noetherian because, by a theorem in the course, it is a principal ideal ring
(every ideal has a generating set of cardinality 1).

Write down an example of a ring which is noetherian but not euclidean.
Answer. [seen, 1 mark]

For example, Q[X,Y].

State without proof Hilbert’s Basis Theorem for polynomial rings.

Answer. [bookwork, 2 marks]
If K is a field, K[X,...,X,] is a noetherian ring.
[10 marks]
A3. Let R be a commutative domain and let a,b € R.
(a) What is meant by saying that a is irreducible in R?
Answer. [bookwork, 2 marks]
a is not a unit and not a product of two non-units.
(b) What is meant by saying that b is an associate of a?
Answer. [bookwork, 1 mark]
b = xa where z is a unit of R.
(c) Prove: if a is irreducible and b is an associate of a, then b is irreducible.
Answer. [bookwork, 8 marks|

Let b = rs where s is not a unit. We need to show that r is a unit. Note that a = (z7'r)s, so
by irreducibility of a, x7'r is a unit, hence r = z(z~'r) is a unit.

Answer the following questions, giving reasons for your answer.

(d)

Is 2X3 + X2 + X — 1 irreducible in Z[X]?

Answer. [similar to examples done in class, 3 marks]
Not irreducible: equals (2X —1)(X2+ X +1). (Can be seen easily by finding the rational roots.)
Is 55 X° + 2X° + 1X — 2 irreducible in Q[X]?

Answer. [similar to examples done in class, 3 marks]
Irreducible: multiply by 60 to get 3X° + 8X3 + 12X — 18 which is Eisenstein with p = 2.

Is X® 4+ X + 1 irreducible in Zy[X]?

Answer. [unseen, 3 marks]

No: divisible by X2+ X +1. Can be checked by long division, or else X8+ X +1—(X?+X +1) =
X2((X3)? — 1) is divisible by X3 +1= (X +1)(X?+ X +1). So X2+ X + 1 is a factor.

[15 marks]

20f 6 P.T.O.



MATH32012 SOLUTIONS
SECTION B

Answer TWO of the three questions in this section (40 marks in total).

If more than TWO questions from this section are attempted, then credit will be given for the
best TWO answers.

B4. Let M(Xj,...,X,) denote the set of all monomials in X7,..., X,,.

(a) Let S be a subset of M(X1,...,X,). State Dickson’s Lemma about minimal monomials of S.
Answer. [bookwork, 3 marks]
Let Smin be the set of monomials in S which are minimal in S with respect to “|” (“divides”).

Then S, is finite, and every element of S is divisible by at least one element of Sy;,.

(b) Prove Dickson’s Lemma for n = 2.

Answer. [bookwork, T marks]

Proof of finiteness of Spin: let S € M(X,Y). If S = &, Spin = & which is finite. Otherwise,
pick XPY? € S. Then no elements of S, are strictly divisible by X?Y? and lie in the infinite
quadrant to the top-right of (p,q) € N x N (the lattice which represents M (X,Y)).

The remaining part of the lattice is covered by p vertical and ¢ horizontal lines, see the illustra-
tion below. If two monomials from S are on the same line (horizontal or vertical), one monomial
divides the other. Minimal monomials must not divide each other, hence a line cannot contain
more than one minimal monomial. Thus, [Syin| < p+¢+1 (at most one monomial on each of
the p 4 ¢ lines plus possibly X?Y7).

p lines

A
|
!

C > > ) ) X X X X X X . o
! ® = monomials divisible
! Py q

C > > > X X X X X X by XY >
! hence not in Sy,
!

C > X X X X X X .
w o = monomials that may be
‘ .

) . . x x x . in Smin (at most one
‘ in each row/column)
!

¢} o ¢} o o - - -X---®---®---®---%---

‘ Xxpya

!

O 0. 0. 0. ‘o) O O O ®) '®) ®)

| q lines

!

O 0. 0. 0. O O O e '®) ®) O——8»

Proof of the rest of the lemma: let m € S. Among all the elements of S that divide m, choose
one which has the lowest total degree, and denote it my,;,. Note that m,;, cannot be strictly
divisible by another element y € S, for y would divide m and have a lower total degree than
Mmin. Hence muyin € Smin-

3 of 6 P.T.O.
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(c) What is meant by saying that < is a monomial ordering on M (Xy,...,X,)?

Answer. [bookwork, 3 marks]

(1) < is a total order on M(Xy,...,X,);
(2) me M(Xy,...,X,) = 1 m;

(3) if m’ < m then, for every my € M(Xy,...,X,), mym' < mim.
(d) Show: if m,m’ € M(Xy,...,X,), m divides m’, and < is a monomial ordering, then m < m/'.
Answer. [bookwork, 2 marks]

m’ = mym for some monomial my; by (1) above, 1 < my, and by (3) above, one can multply
both sides of the inequality by m, obtaining m =1-m < mym =m/'.

(e) Let I # {0} be a monomial ideal of Q[X}, ..., X,]. Show that I contains a monomial, m, such
that m is divisible by exactly 2015 other monomials contained in /.

Answer. [unseen, 5 marks]

I # {0} means that [ is generated by a non-empty set of monomials. Let mgy be the least
monomial in I with respect to the lexicographic order with X; = ... = X,,. Put m = moX?2!5;
then m € I. Let m’ € I be such that m' | m, m’ # m. By the choice of m( and part (d) one has

Mo <Lex M <Lex Mo X221, There are exactly 2015 monomials m/ in M (X1, ..., X,,) satisfying
this inequality, namely mq, mX,, ..., moX2"!*; all of them are multiples of m hence are in I.
[20 marks]

B5.

(a) What is meant by a prime in a commutative domain R?
Answer. [bookwork, 2 marks]
p € R is a prime if p is not a unit and Ya,b € R, p fa,p fb = p fab.

(b) Show that a non-zero prime is irreducible.

Answer. [bookwork, 3 marks]

Take a prime p # 0 and let p = ab. Then p|abso p|a or p|b. If p|a then a = pz and p = pzb,
so by cancellation law b = 1 and b is a unit. If p|b then a is a unit. Thus, one of a, b is a unit.

(c) What is a unique factorisation domain (UFD)?
Answer. [bookwork, 2 marks]

A domain where every non-unit is a product of primes.

(d) Describe without proof all primes in the domain R, and state whether R is a UFD, if
i. R =R, the field of real numbers;

ii. R = R[X], the ring of polynomials in X with real coefficients.

40f6 P.T.O.
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Answer. [routine, 5 = 2 + 3 marks]

i. In R, the only prime is 0. It is a UFD.
ii. In R[X], the primes are 0, aX +b where a,b € R, a # 0, and aX?+bX + ¢ where a, b, c € R,
b? < 4ac. Tt is a UFD.

Is 2+ 157 a prime in the UFD Z[i], the ring of Gaussian integers? Give reasons for your answer.

Answer. [similar to examples done in class, 3 marks]
Yes: |2 + 15i? = 2% + 152 = 229 is a prime number; easy to see (this was shown in class) that

2 + 15¢ cannot be factorised into non-units, so is irreducible hence a prime in the UFD Z[i].

Let a, b, ¢, d, e be non-zero elements of a commutative domain R (not necessarily a UFD) such
that ab = cde and ac = bd. Show that if ¢ is a prime, then e is not a prime.
Answer. [unseen, 5 marks]

c*de = abc = b*d so by the cancellation law e = b%. Therefore, c|b?, hence c|b as ¢ is a
prime. Write b = cx. Substitute into c?e = b* to get e = x2. A square cannot be irreducible,
hence by part (b), e is not a prime.

[20 marks]

What is meant by saying that an ideal I of a commutative ring R is a maximal ideal?

Answer. [bookwork, 2 marks]

I # R, and there is no ideal J such that I C J C R.

What is meant by the radical, v/, of an ideal I? What is a radical ideal?

Answer. [bookwork, 2 marks]
\/Yz{aGR|E|nGN: a”EI};Iisaradicalidealif\/le.

Show that a maximal ideal is a radical ideal. You may assume basic properties of the radical
without particular comment.

Answer. [seen, 2 marks]

Let I be a maximal ideal. Then I # R so 1 ¢ I hence 1" ¢ I for all n € N and 1 ¢ /1.
Therefore, I C /I C R. By maximality of I, I = /I.

Describe all maximal ideals of the ring C[X,Y]. Prove that the ideals in your list are maximal.
(You do not have to prove that there are no other maximal ideals.)

Answer. [seen, 5 marks]

The maximal ideals are <X — a,Y — b> for all (a,b) € C?. Proof that the ideal I =
<X —a,Y —b> is maximal: G = {X —a,Y — b} is a Grobner basis for any monomial or-
dering (the leading monomials are relatively prime) which is reduced and does not contain 1.
Hence I # C[X,Y]. If f ¢ I, then remainder(f,G) must be a non-zero constant, hence
<{f} UG> = C[X,Y] — this proves maximality of I. (There are other ways to prove that I
is mazximal.)

5 of 6 P.T.O.
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Give an example of an ideal J # {0} of C[X,Y] such that J cannot be generated by two
polynomials. Justify your example.

Answer. [similar to an example on example sheets, 5 marks]

For example, let J = <X?2, XY, Y?>. Assume for contradiction that J is generated by f, g € J.
As J is a monomial ideal, every monomial in f and in g is divisible by X?, XY or Y?, hence
is of total degree > 2. So, writing X2 = hy f + hog where hy, hy € C[X,Y], we conclude that
X? is a linear combination — with scalar coefficients — of f and g (where ~ denotes the terms
of total degree 2). But so are XY and Y? — a contradiction, as the span of f and g cannot
contain three linearly independent elements.

For the ideal .J from your example in part (), find V(J) and v/J.

Answer. [varies depending on J, 4 marks]
In our particular example, V(J) = {(0,0)} (obvious) hence v/.J = Z({(0,0)}) = <X,V >.

[20 marks]

END OF EXAMINATION PAPER
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MATH32112/42112/62112/ Exam 2015 Solution

Al. (i) L is a Lie algebra if it is anticommutative, i.e. |z, xz} = 0 for
all z € L, and j(z,y,2) =0 for all z,y,2 € L. If L is anticommutative
then 0 = [z +y,z +y] = [z,2] + [z, 9] + [y, 2] + [y,0] = [2,9] + [y, 2]
for all z,y € L implying [z,y} = —[y,z). Also, §'(z,y, 2) = [z, 9], 2} +
[[y} Z], E] + [[Z, ‘r‘CL y] = _['Z1 [S‘L‘,y]] o [.G‘L‘, [y'n Z” - [y% [Z, ‘r‘c]] = —j(ﬂ?, Y, 27) for
all x,y,2 € L. ‘

(ii) A subspace I is an ideal of L if [L,]] C I. We say L is simple if it
is not abeliean, ie. |L, L] # {0}, and the only ideals of L are {0} and
L. Lemma on 2 ideals states that if /, J are two ideals of L then so is.
[I,J] = span{[z,y]| z € I,y € J}. Indeed,if z € L,u€ T andv € J
then [z, [u,v])] = —[u, [v, 2] — [v, [w, 2] = [u, [z,v] — [jz,u),v] € [I,J]],
hence the result. :

(i) Set L' := L and define L*¥! := [L,L¥] for k € N. We say L
is nilpotent if LY = 0 for some N. Clearly, L = L' is an ideal of L.
Suppose LF is an ideal of L for some k. Then so is L¥! = [L, L¥] by
Lemma on 2 ideals. Hence LF D L*¥! for all k.

| (iv) Set L® := I and define L*+D ;= [L®) L] for k € N. Clearly,
L = I® ig an ideal of L. Suppose L is an ideal of L for some k.

", Then so is L&) = [L®) L8] by Lemma on 2 ideals. So each L™ is

Y an ideal of L by induction on n. Hence L™ D (L, LIW] D L&D, We
§ say L is solvable if L®Y) = Q for some N.
; We claim that L™ C L?" for all n € Zso. The statement holds for
n=0. If L) C L2* for some k then L&D — [L8) [®) C [L*, ¥,
So it suffices to show that (L™ L") C L™ for all m,n € N. This is
clear when m = 1. Suppose [L*#, L] C L¥™ for some & and all n. Then
LM 1) = (12,14, 17 C ([F, L%, L)+ (L, (24, L7 C (L4, L) ¢
[L, LF7) C L¥H (we used Lemme on 2 ideals and our induction
assumption).

If L™ = 0 for some n € N then L¥ C L* =0 {(as 2" > n for n > 1)
implying L™ ¢ L#" = 0. So any nilpotent Lie algebra is solvable.

(v) The map adz: L —+ L is defined by setting (ad z)(y) = [z, y] for
all y € L. As the operation in L is bilinear, adz is an endomorphism
of L and the map ad: L — gl{(L) is linea,]:. We call ad z the adjoini
endomorphism of z. For all y,z € I we have that [adz,ady|(z) =
(w22)olsd) (o]0 = sl -l = ) =
(ad [z,%])(2). So [adz,ady] = ad[z,y] for all x,y € L. Hence ad is a
representation of L,

1
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(vi) We have [2u,v] = 2v, [2u,2w] = —4w = —2(2w) and [v,2w]| =
2u. So the linear map sending i to 2u, e to v and f to 2w is a ho-
momorphism of Lie algebras (here {e, h, f} is the standard basis of
si(2,k)). Since char(k) # 2, the vectors 2u,v, 2w form a basis of A’
Hence A = 5i{2,k) as Lie algebras.

B2. (i) As a vector space gl(V) is the space of all endomorphisms
of V with Lie bracket given by [z,9] = oy —yoz for all z,y €
gl(V). A linear map p: L — gl(V) is called a representation of L if
ol[z,9]) = [p(x), ply)] for all z,y € L. The map L X V — V given by
z.v = (p(x))(v) for all z € L and v € V' is then bilinear and has the
property that [z, ¥]v = (p([z,¥]))(v) = zyv —yzv forallz,y € V.
This gives V an L-module structure. We say that p is irreducible if
V # {0} and the only L-submodules of V" are {0} and V.

(i) A € gl(V) is nilpotent of AY = 0 for some N € N.-If A s
v o eigenvalue of A then A(v) = Av for some nonzero v € V. Then
¥ § = AN¥(p) = AVv implying A == 0. Define Ly, R4: gl(V) - gl(V) by
9 setting La(X)=AoX and Ra(X) =X oA forall X ¢ gl{V}. Then
L4 and R4 are endomorphisms of gl{V) and ad A = La— Ra. Since
composition is an associative operation, (LaoRa)(X) = La(f4 (X)) =
Ao(XoA) = (AoX)oA = Ra(La(X)) = (Ba o La)(X) for ail
X € gl(V), the endomorphism L4 and R4 commute. But then

iy

i)

(ad A" = (La— Ra)" = > (”D (—1)" kL o Rf;?k | (Vn e N).

=0

So, if AY = 0 then (ad A)>~! = 0, hence ad A € gl{gl(V}) is nilpotent.

[ (iii) A chain of subspaces {0} = Vp C Vi C -+ C Vp =V is called 2
flag in V if dim V; = ¢ for all 0 <1 < n. Lie’s theorem states that if
ichar(k) — 0 then for any finite dimensional solvable Lie subalgebra I,
of gI(V) there exists a flag 0 = Vo C Vi C +-- C V=V in V such that
Se(Vp) CViforallze Landall 1 <d<ni _
§  Supposc char(k) = p > 0 and let V = k[X]/{X")} be the truncated
polynomial ring over k. Then V has basis {1,Z,... ,#71} where t is the
' coset of X in V. Let Hy be the 3-dimensional Heisenberg algebra over

k. Tt has basis {u,v,z} and we have that [,w] = z and # € 3(Hy). '

¥
8 Note that H, is nilpotent, hence solvable. Let i; € gl(V') be such that
“A° R,(t%) = t*+1 for all k. The linear map p: Hy — gl(V) such that p(u) =
8/0t, p(v) = Ry and p(z) = Idy has the property that p([u,v]) = ldy =
\ [8/0t, Ry| = [p(u), p(v)], hence defines a representation of 1, in gl(V').
if W is a nonzero submodule of the H-module V then WNKer R, # {0}
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implying t*~! € W. But then (8/0t)*(t* ') € W for all 4, yielding
V = W, So the Hi-module V is irreducible and hence cannot have
submodules of dimension p — 1. This shows that Lie's theorem fails in

characteristic p > 0.
A

(iv) The radical of L, denoted rad L, is the largest solvable ideal of
ol.. We say that L is semisimple if rad L = {0}. Let R = rad(L},
¥ R =rad(L/R) and let 3: L — L/R be the canonical homomorphism.,
Let B = B~Y(R). Then (L, R]) = [8(L),R] C R, so that R is an
ideal of L. Also, Kerff5 = R and R = R/R by the theorem on
isomorphism. Since both R and R are solvable, so is R. But then
R = R by the maximality of R. Hence R = {0} showing that L/R is
semismiple,

N (v) Clearly, [k, w] = [h, [u,v]] = 0 by the Jacobi identity and [L, L] =
3 span{u,v,w}. If 2 = Ah + dgu + A + Mw € 3(L) then |h, 2] = 0
“ forcing A = 0 for ¢ € {2,3}. Since [u,2] = 0 we also get Ay = 0.
g Therefore, 3(L) = kw.

B3. (i) A bilinear symmetric form v: L X L — k is L-invariant if

set of all » € L such that y(r,z) = 0 for all x € L. This is a subspace
of L. If x € I and 7 € Rad v then y([z, 7}, y) = —~(r, [z, ]} = 0 for all
y € L. Then [L,Rad <] C Rad+, i.e. Rady is an ideal of L.

For =,y € L set x(z,y) := tr{ad z o ady). The bilinear form x: L x
L — k is called the Killing form of L. If L is simple and the Killing
form x of L is nonzero, then Rad « # L. But then Rad x is a proper
ideal of I and hence equals {0}. It follows that x is non-degenerate.

(i) Since LV = {0} for some N and (ad o ad)*(L) € L¥*+! for all
k, we see that ad z o ady is a nilpotent linear operator for all z,y € L,
But then s{z,y) = tr(adz 0o ady) = 0, that is x = 0. '

/ [z, 1], 2) + v(y, [z, 2]) = O for all z,y,z € L. The radicel rad v is the
3

(i) Let Sy := {v1,...,vm} be a basis of /. By Linear Algebra, there
are Vi1, ..,V € Lsuch that S := {v1,...,Um, Ums1--.,Vn} i8 & basis
of L. Let z,y € I, and let Xy and Y, (resp., X and Y') be the matrices
of ad; z and ad;y (resp. adz and ady) relative to' Sy (resp., §). As [
is an ideal of L we have that '

_ X()}/U *
xv= (350 1),

But then sz, y) = tr(XY) = tr(XoYp) = ws(z,y) forall z,y € I.
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: (iv) Let a € A and = € L. Then ((ada) o (ad 2)(L) = -

= la, |5, [a, [z, L)) € [a, {5, o, L]} € [0, [, AL} € [0, A] € [4, 4] = {0}

\Therefore, (ad a) o (ad))? = 0 showing that (ad a)o (ad z) is nilpotent.
Then {a,z) = tr(ad a) o (adz)) = 0 for all z € A. Hence A C Rads.

(v) Note that [I;,I;] € Lnl; = {0} if ¢ + 4. Let R = rad(L)
and suppose R # {0}. Let 0 # r € R and write r = S 1y with
r; € I;. Thenr, # 0 for some 1 <5 < m. The projection ms: L — Iy
sends any = 9, % with &; € I, to z,. The above remark shows
that m, is a surjective homomorphism of Lie algebras. Then ({1} is
o nonzero solvable ideal of I,. Indeed, [I, ws(R)] = [m{L), ma{R)] =
74([L, R]) C w,(R). Since I, is a simple Lie algebra, this is impossible.
By contradiction, we deduce that K = {0}, i.e. L is semisimple.-

(vi) Since [u, [v, [u, [v, L)]]] = Ky, [v, [w,0]]] = {0} and [v,{v,L]] =
[0} we sec that ((adw) o (adw))? = (adv)® = 0. Hence x(u,v) =

x'/Lm[éS

r(v,v) = 0, showing that kv € Rad k. On the other hand, the maftrix
of (adw)?® with respect to the ordered basis {u,v} equals diag(0,1).
Hence w(u, 1) = 1 implying u & Rad x. So Rad k = kv.

B4. (i) An element z € gi(V) is semisimple if V' has a bagis con-
sisting of eigenvectors for z and it is called nilpotent if N =0 for
some N. A decomposition # = s + Zn with z,, 2z, € gl(V) is called
o -Jordan decomposition of z if z, is semisimple, T is nilpotent and
[Ts, Zn] = 0. There exists a Jordan decomposition T = Zs + Tn of z
such that both zy and z, are polynomials in z. Suppose « = z, + o,
is another Jordan decomposition for z. Then 0 = (&, ] = [z + 23] =
[z, 2] + |z, z,] = 0. So zj commutes with z, hence with any poly-
nomial in z. As a result, [z,,z%) = 0. Two commuting diagonsalisable
linear operators ean be.diagonalised simultaneously. Hence s — T, is
diagonalisable, too. Similarly, [z, z] = 0 which implies that z} com-
mutes with any polynomial in . In particular, [z, 2] = 0. But then
(z —z)N = Yoo (’:r)(ul)Nﬁi(m’n)“'owf*i =0 N> 0. Sox,—znis
nilpotent. As z,+z, = s, + 7;, we have that z; — !, = z}, — x, is both
semisimple and nilpotent. As 0 is the only eigenvalue of a rilpotent
endomorphism, we get =, = &, and T, = Zn.

A Lie subalgebra L of gI(V) is called separating if zy, 2, € L for all
z el

(ii) We call V an I-module if there is a k-bilinear mapping LxV — V
sending (z,v) € L x V to z.v € V such that [z,y].v = z.y.v — y.2.0
for all z,y € L and v € V. We call a nonzerc L-module V irreducible
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—~ if {0} and V' are the only submodules of V. A subspace W of V is
~| an Irsubmodule if 5w € W for all z € L and w € W. An L-module
Q‘ V is called completely reducible if there exist irredueible L-submodules

Vi,...,Voin Vsuchthat V=Viap.-- @ V..
Weyl's theorem states the following: Let L be a finite dimensional
semisimple Lie algebra over an algebraically closed field of characteris-

Q/ tic 0. Then any finite dimensional L-module is completely reducible.

(ili) Since L is semisimple the adjoint representation ad of L is com-

! Pletely reducible. Then Weyl’s theorem  implies that there exist irre-

6\ ducible L-submodules I4,..., I, of the adjoint L-module 7 such that

L=01L& &I, Rach I is (ad L)-invariant, implying [L, ;] C Ik

g | for all & < m. So each /; is an ideal of L. 1f 4 # j then 5, ;] C

8 I; N I; = {0}, which shows that the ideals /; pairwise commute. If J,
¢, ' is a nonzero ideal of I then

(L, Je] = D q T Tkl = 20000 i Je] = [Lk, il € i

So Ji is a nonzero ideal of L. But then Jy is a nonzero (ad L)-submodule

of Iy. Therefore, Jy = Iy by the irreducibility of I;. Since L has no

i nonzero abelian ideals, this yields that each [ is a simple Lie algebra.
¥
g
X

(iv) D ¢ gl{A) is a derivation of Aif D(z-y) = D(z)-y-+z-D(y) for all
xz,y € A. Let D, D' € Der(A) and A\, N € k. Then (AD+ ND')(z-y) =
AD(z-y)+ND'(zy) = (AD+ND")(z)-y+z (AD-+XND')(y) which shows
that Der(A) is a subspace of gl(A4). Next, [, D'|(z-y) = (Do D)z
V) ~(D'oD)(z) = D(D(@)y+a D/ (y)) - D/(D{z) g+ D(y)) = (Do
D'~ D'oD)(z) 4+ - (Do D — Do D){z) = D, D)(z) -y +5- 1D, D(y).
So [D, D] € Der(A), i.e. Der(A) is a Lie subalgebra of gl(A).

{v) Let S = {e, h, f} be the standard basis of L = sl{2,k), so that
[h, €] = 2e, [h, f] = —-2f and le, f] = A. Lot E, H, I be the matrices of
ade, ad ki, ad f relative to S, respectively. Then

0 -2 0 20 0 0 00
E={0 0 1|, H={00 0 |,F={ ~100
0 0 0 00 —2 0 20

Let i = Radk and suppose It # {0}. Then K is a nonzero ideal of L,
hence contains an eigenvector for ad h. It follows that RN{e, h, [} # 0.
But then either (e, f) = 0 or &(h, h) = 0. However,

4 0 0

2
EF=110 00
0 00

(el vl e}

0
0|, B*= 0
0 4

Uosees
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which gives &(e, f) = 4 and x(h, h) = 8. Since char(k) # 2, we reach a -
contradiction. As a result, x is non-degenerate. ,
R 0-1 . .
(vi) Sincee+2f =1 o g | the characteristic polynomial of e +-2f

equals $2 — 2 and has two distinct roots ++/2. Therefore, e + 2f is
semisimple. We conclude that (e + 2f)s = e+ 2f and (e+2f), = 0.

Q5. (i) If v € V, then h.(ew) = [h, e].v + e.(h.v) = 2ew + e.(uv) =
(1 +2)(ew) and h.(fv) = [A, flv + f.(ho) = —2fv + flpw) = (p—
2 (fv). So ev € Vg and fu € Vo, We say p is a weight of V' i
v, # {0 | |

(i) Let b = kh ® ke. Then @ = ke and 6@ = {0}. So bisa
solvable Lie subalgebra of L. Then b stabilises a flag of subspaces in V
(Lie’s theorem). Hence there is a nonzero v € V such that z.v € kv for
all z ¢ b. In particular, v,ew € V), for some weight A of V. But then
part (i) gives ev € VAN Ve = {0}. So e.v = 0 implying Vprim # {0}.
Ifw € Vi then e.(haw) = [e, hl.wt+h.(ew) = —2eaw+h.0=0+0=0.
Hence h.w € Vyiim.

(iii) We call v € V' a highest weight vector of weight X if v # 0,
e = 0 and b = dv. Ifvg is such a vector and v = %f".vg then f.vp =
 Ferha = (k + 1)vi41. Suppose Clearly h.v = (A — 2 - D). Suppose
h.vg = (X — 2k)ug. Then Atk = h.ﬁff.vk = (b, A1+ fh) e =
(-2 et (A - 2k) f.vg) = (A—2(k +1))vx 1. By induction on k we
get hug = (A —2k)ug for all k € Zo. Since ey =0 = {A—0+1)v_y the
statement about e.vy holds for & = 0. Suppose eV, = (A —k + 1)ve—1
for some k. Then evgir = ﬁe.f.vk = -,;{i(h + fe)u = k—lﬁ(z\ -
2k)0 + i S -(A — b+ Do) =
= (%"Fk()\;ffl))vk = (H?_‘(_i“k e = (A—(k+1)+1)vg. By induction
on k we obtain that ey = (A — k+ Vg for all k € Zxo-

2

ﬁr_pf[?,f“ ———

(iv) We need to check that E, H,F satisfy the standard relations
[H,E| = 2F, [B,F] = H, [H,F] = —-2F". Note that P is spanned
by the monomials z™y™ with m,n € Z>o. We have that E(z™y") =
na iyl H(z™y™) = (m — n)z™y® and F(z™y") = mz™ T
Therefore, (H(E(z™y™)) — E(H(z™y"™)) =

(n(m ~n+2) — (m—a)n)r™ g™ = onz™Hy = 2B (z™y").
Hence [H, ] = 2E. Similarly, (H(F(z™y")) — IP(H(z™y™) =

| (m(m —n—2) — (m—n)m)z™ y" " = —2mz™ = _2F (™).

$ee o e pampld



So [H, F\ = —2F. Finally, (B(F(z™y™)) — F(E(z™y")) =

e, 1t

((n+ Dm — n(m+ 1))e™y" = (m —n)a™y" = H(z"y").
So [, F] = H and we are done.

(v) The subspace Py, has basis {z™*y*| 0 < k < m} and is pre-
served by the linera operators , H, F'. Hence it is an L-submodule of
P. Since H(z™ *y*} = (m — 2k)z™ *y*, the weights of the L-module .
Ppeare {m—2k]0<k<m} = {mm-2,...,~m+2,-m}.

c‘eﬁ,-g_eg;,(
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1. This question is intended to be easy. It tests the students on basic facts that they should have
memorised.
(a) The statement is false. Marking guide: Marked all or nothing.

(b) The formula is
b
u(e) = [ Glavzo) fan) dao
Marking guide: Marked all or nothing.

(c¢) Reciprocity for the Green’s function means G(z,xy) = G(zg,x). The Green’s function has
reciprocity if and only if the boundary value problem is self-adjoint. Marking guide: 3 marks for
the reciprocity, and 3 marks for saying BVP is self-adjoint. 1/3 if they omit the conjugate in the
reciprocity.

(d) The condition is that p’ = r. Marking guide: Marked all or nothing,.

2. This question is intended to be an easy application of the method to find Green’s functions in one
dimension that we studied in class. First we find that a complementary solution is

u(x) = ay cos(z) + ag sin(x).

Note that wuy(z) = cos(z) satisfies the right boundary condition «}(0) = 0, and uy(z) = sin(z)
satisfies the right boundary condition u5(7w/2) = 0. The Wronskian of these two is

W = cos®(z) + sin®(z) = 1.
Thus the Green’s function is

G(z,xz0) = —ulww/)ztjg(;co)]{(xo — )+ _ul(I;IE/()();L()Q)(a:)

= cos(x) sin(zg)H (z¢g — =) + cos(zg) sin(x) H (x — xp).

H(x — x0)

Marking guide: A rough guide for allocation of marks will be:
e Complementary solution: 3 marks.
e Checking functions in complementary solution satisfy appropriate BCs: 2 marks.
e Wronskian: 2 marks.

e Correct final formula: 3 marks.

3. (a) The adjoint operator and boundary conditions are found by integrating by parts, or using the
general formulae we covered in class. The adjoint operator is

Lv=v"4+v — 60.

For the adjoint boundary conditions we can apply Green’s second identity which gives

L
(v, Lu)p2 — (L', u)p2 = [u'@ —ut — uv
0

— W (L)YO(L) — u(L)7 (L) — u(L)5(L) — o' (0)5(0) + u(0)7(0) + u(0)5(0).

2 of P.T.O.
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Setting this equal to zero and assuming that u satisfies the original boundary conditions we have

0= —u(L)(v'(L) = 3v(L)) — v'(0)v(0)
from which we conclude that the adjoint boundary conditions are
V(L) —3v(L) =0, v(0)=0.

Marking guide: 2 marks for adjoint operator, and 2 marks for each adjoint boundary condition.

(b) For this we apply the Fredholm alternative which states that there is a unique solution of the
original boundary value problem for every f if and only if the only solution of the homogeneous
adjoint problem is v(z) = 0. In this case we have found in part (a) that the homogeneous adjoint
problem is
{ V'(x) +'(x) —6v =0, xe€(0,L), (1)
V(L) —3v(L) =0, wv(0)=0.

We must determine whether there is a nonzero solution to this problem. First, the general solution
of the ODE is

v(x) = a1e® + aze ™,

and
3x

V() = 2a,€** — 3age”
Thus the boundary conditions are

O=a;+ay,, 0= are*t + CL266_3L,

(o o) ()= )

There is a nonzero solution if and only if the determinant is zero:

or in matrix form

1
6e’3L—e2L:O<:>6:e5L<:>L:gln(6).

From the Fredholm alternative we thus have that there exists a unique solution of the original problem
if and only if L # In(6'/°). Marking guide:

e Show they understand what is required (find solutions of homogeneous adjoint problem) (2
marks).

e Find general solution of homogeneous adjoint problem (1 mark).
e Apply BCs (2 marks).

e Reach correct conclusion (1 mark).

(c) This is another application of the Fredholm alternative. In the case L = In(6'/®), we can see from
the work on part (b) that a nonzero solution of the homogeneous adjoint problem (1) is

3 of P.T.O.
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Therefore, when L = In(6'/°) the Fredholm alternative states that there are infinitely many solutions
of the original BVP if

/L(ezx — e ) f(x) dz = 0.
Marking guide: 0
e Show they know the condition for the general case from the Fredholm alternative (2 marks).
e Find correct nonzero solution of adjoint problem (1 mark).
e Correct condition on f (1 mark).

e Saying there are infinitely many solutions (1 mark).

4. (a) Putting the harmonic time dependence into the equation we have

u(z)e ™t = —c(x)Zu(x)e_m + f@)e ™ = u"(2) + k(z)?u(z) = f(x).

Marking guide: Should be marked all or nothing.

(b) Since k(z) = w/cy = ko for |z| sufficiently large, we have that for z sufficiently positive
u(z) = a1e™” 4 age ",

Since the time dependence of the actual displacement U(x,t) is e~™! the term e*0% gives a wave
moving to the right, and e~*°* gives a wave moving to the left. If no wave is coming from positive
infinity then for x sufficiently positive it must be the case that there is no wave moving to the left,
or ag = 0. Thus we require

u'(x) — ikou(z)
iky

0=ay=— & u'(x) —ikou(z) =0

for all x sufficiently positive. We express this as

lim u'(z) — ikyu(x) = 0.
T—00

Similarly for z sufficiently negative we have
u(z) = bre™® 4 bye o

and to ensure that there are no waves moving to the right (i.e. coming from negative infinity) we
need b; = 0. Thus we require
u'(x) + tkou(z)

0="0b = 2k & u'(x) +ikou(x) =0

for all x sufficiently negative. We express this as

lim ' (z) + ikou(z) = 0.

T—r—00

4 of P.T.O.
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Putting them together the radiation conditions are

T—00

lim u'(x) — ikou(x) = 0,

lim ' (z) + ikou(z) = 0.

T—r—00

Marking guide:
e 3 marks for the conditions themselves.
e 3 marks for the explanation.

If they have the signs wrong in the radiation conditions then 2/3 for that part.
(¢) The boundary value problem is

u’(x) + kRu(z) = f(z), z€R
lim, o0 v/ (x) —ikou(z) =0, lm,,_o v (z) + ikou(z) = 0.
The Green’s functions G(z, zy) must satisfy
d2G
@(x, T0) + ki G(x,20) = 0

for = # x(, and therefore must take the form

G(z,20) = { bi(x0)e™® + by(wo)e™ ™"z < xg

ay(wg)e™® + ay(wg)e T 1 > .

The radiation conditions imply that b; = as = 0, and so in fact

—ikox
G(z, z0) = { balzo)e”/ ™ @ < o

ay(wg)e*or x> xq.

We know that G(z, z¢) must be continuous at = xy which gives

bQ(:L,O)e—ikoxo — al (x0>€ik0xo’

and the derivative dG/dz(x, xo) must jump by 1 at xy which gives

’ikoal (xo)eikoxo -+ ’ikobg(ﬂj‘o)eiikoxo =1.

Solving these equations yields

e—ik‘oxo

eikomo
a1 (Toy) = - bg To) = .
( ) 22k0 ’ ( ) 2’lk0
and so o)
e'L 0 .Z‘O—Z
- r <X
G(:L’, IO) = eik(?(lfgzo)
2iko T > Xg.
or
e’ik‘o‘x—xo|
G(x,zg) = ————
Marking guide:
5 of

P.T.O.
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e Setting up equation for G when x # xy (1 mark)
e Applying radiation conditions (2 marks)
e Applying continuity and jump condition (2 marks)

e Final formula (2 marks)

(d) Putting u(z) = w;n(x) + us.(x) into the equation and rearranging a bit we have

uf (2) 4 ki, (2) +ul(2) + kjuse(w) + kg Mo (2 — 20) (Uin(2) + use()) = 0.

i

~~
=0

This implies that
ul (2) + kjuse(z) = =k M (2 — 20) (Uin () + Use(T)),

and ug. satisfies the radiation conditions. Therefore, using the Green’s function from part (c)
Use(x) = —k:gM/ G (2, 21) (Uin(21) + Use(71))5 (21 — 20) dg = —kg MG (2, 70) (tin (T0) + Use(0)).

Putting x = x into this equation we can solve for ug.(z¢) to get

1Mk
Use(0) = ————.
( ) 2 — ZMk’O
Now putting this back into the previous equation we have

usc(l,) — ezk0|xfmo|€1k0xo

Marking guide:
e Find ODE satisfied by us. (3 marks)
e Apply Green’s function to get equation for u. involving wu.(0) (2 marks)
e Find u.(0) (2 marks)

e Final formula for us.(x) (2 marks)

5. (a) Start by setting
1
c= / e’ u(y)dy.
0

Then by multiplying the integral equation by ¢ and integrating from 0 to 1 we have

1 1
c:)\(/oe xdx)c+/oe f(z) dz.

6 of P.T.O.
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or, after evaluating the integral,

c(l—)\€;1> :/0161‘2 (z) da.

This will have a unique solution c if and only if

1S

-1

In the case that \ £ % we solve for ¢ to get

1 S
“CTi1 =1 ) ¢
2 0

and putting this back into the original equation we find that

u(z) = 1_)\6_/6y ) dy + f(z)

must be the unique solution of the integral equation. To answer (a) plainly then, there is a unique
solution for every continuous f if and only if A # 2/(e—1). Marking guide: Note that the marking
for parts (a) and (b) overlaps somewhat.

e Define ¢ (1 mark)
e Find equation for ¢ from integral equation (1 mark)

e Correct conclusion. (1 mark)

(b) The answer to part (b) has already been found in the work above for part (a). The formula for
the solution is

u(x) = )\e_/ey ) dy + f(x).
Marking guide: Note that the marklng for parts (a) and (b) overlaps somewhat.
e Define ¢ (1 mark)
e Find equation for ¢ from integral equation (2 marks)
e Solve for ¢ (1 mark)

e Write down equation for u correctly (2 marks)

(c) Looking back at the work on part (a), we see that when A = 2/(e — 1) we must have

/01 ¢ f(z) do =

for there to be a solution. In this case ¢ can be anything, and so putting ¢ back into the original
equation yields the general solution

u() = cx + f(x)

where we have absorbed A into the arbitrary constant ¢. Marking guide:

7 of P.T.O.
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e Correct condition (2 marks)

e Correct general solution (1 mark)

6. (a) The boundary value problem for G(x,xg) is

V2G(x,%0) = 0(x — xg), for all x, x¢ € By,
G(x,x%x0) =0, forall x€dB;, x € B;.

Marking guide:
o V2G(z,20) = 6(x — xp) (2 marks)
e Boundary conditions (2 marks)

e Specifying z, o in the correct sets everywhere (1 mark)

(b) This follows from equation (1) on the front of the exam if we set D = By, f(x) = u(x), and
g(x) = G(x,%p). Doing this we find

f(x)0(x —xp) dx = / u(x)VxG(x,X0) - n(x) ds(x)
Bi OB,
which gives after switching x and xq and using the fact that the Green’s function is symmetric
f(x) = / h(x0)Vx,G(X, %) - n(xq) ds.
OB,

To find the formula given in the exam note that for xy in 05,
n(xg) = Xo.
Marking guide:

e Knowing to use formula (1) from front of exam (2 marks)

Properly specifying f and ¢ in formula (1 mark)

Getting x and x¢ in the proper places (1 mark)

e n(xgp) = xo (2 marks)

(c) We apply the method of images in accordance with the given hint. This requires finding a € R
and X, € R3\ B; such that
G30(X, X0) = —aG300(X, Xo)

for all x with |x| = 1. This is equivalent to

|x — Xo|? = a®|x — xo|* & [x|* + [Xo|* — 2x - X0 = a*(|x|* + |%0|* — 2% - X¢). (2)

8 of P.T.O.
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Rearranging and using |x| = 1 we have
a®(1+ |xol?) — (1 + |%o[?) = 2x - (a*xp — Xo).

Since this must hold for every x with |x| = 1, and the left hand side does not depend on x, in fact
both sides must equal zero. Therefore
a2x0 = Xo, (3>

and
a*(1+ [xo]*) — (14 [%0[*) = 0.

Putting the first of these equations into the second yields
a®(1+ |xo|*) — a*lxo|* = 1 = 0. (4)

This is a quadratic equation in a? which can be solved using the quadratic formula to get

2o (L [xo[*) £ /(1 + [x0[*)? — 4pxol* _ (1 +[x0f*) £ (1 — [xo]?)
2|X0|2 2|X0|2 '

So we find
9 1

_ 2 __
_\XOP or a°=1.

a

We do not take a? = 1 because in that case we would have x; = X,. Thus we find

1 ~ X0

a=——: Xy= .
ol T Txof?

Note that a must be chosen to be negative since Gz (X, %) < 0 everywhere. The Green’s function
is given by

1 1 1
G S _ ,
(xx0) = 0 (\x—xoy |x0Hx—xxTo|2)

From this formula it is not clear what is the value of G at xo = 0. We can rearrange the last formula
to handle this, and also make the symmetry clear:

G ) 1 1 1
X,Xg) = —— — :
7 T \x—xol /KPP — 2% xo 1 1

Marking guide: I anticipate this will be a difficult question, and so weight the marks quite a bit
towards the first steps in the calculation.

e Evidence they know where to start (2 marks)

Getting to equation (2) (2 marks)

Separating into equation (3), and the one below it. (3 marks)

Getting to equation (4) (1 mark)

All the rest (2 marks).

9 of P.T.O.
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MATH35032: Mathematical Biology
Solutions to the June exam, 2014

A1l. This problem appeared on an old exam that isn’t currently available to stu-
dents, so should be new to them. Similar single-species population models are studied
at length in lecture and in the Problem Sets.

(a) [3 marks] The first term in the ODE
dN < N) B hN

P Gl Rty ey

is the standard logistic growth law, while the second term models the impact
of fishing, which is approximately linear in population for N < A, but tends
to the constant rate h for N > A. The parameters are

r the intrinsic, per-animal growth rate of the population: it has units of
1/time. Tt is also the maximal growth rate or, equivalently, the rate
at which the population grows when N is small, so that fishing and self-
limitation are small effects.

K the carrying capacity of the environment. In this problem it has units of
“fish”. In the absence of fishing (if A = 0) the population would have a
stable steady state with lim; ., N(t) = K.

h The mazimal rate of extraction from fishing: it has units of fish/time.

A The fish population at which extraction reaches half its mazimal rate.

(b) [3 marks] A suitable change of variables is

.
U= — and T=1rt or t = —.
r

K

Then one can compute

du du dt dN

dr dN dr dt

b0
- ¥ (1 - %) - (iK) <A/fg>vffz)w<>

Yu
a—+u

= u(l—u)-—

The last line is the expression we were aiming for and, by comparing it to the
line above, one can see that



(¢) [4 marks] If a =1 the equilibrium condition is

u(l—u)= e
1+u
which has roots u, = 0 and u, = ++/1 — 7. Only the positive square root is a
sensible population and, even then, only when v < 1. And for « in this range
it’s easy to see that du/dt > 0 for 0 < u < wu,, while du/dt < 0 for u > u,, so
the origin is unstable and u, = /1 — 7 is stable.



A2. This is stimilar to problems I did in example classes, but not identical.

Motifs were introduced by Uri Alon and his collaboratorsﬂ, while graphlets were
proposed as an alternative by Natasa Przulj and her colleaguesﬂ.

e [1 mark] A motif is a small, directed, weakly connected subgraph of a regula-
tory network that has no parallel edges and no loops.

o /2 marks] A 3-node feed-forward loop (FFL) is a regulatory motif in which
one gene, say X, controls the expression of another, Z in two ways: directly,
and indirectly, through the expression of some intermediate gene Y. The
loop is incoherent if the direct and indirect influences of X on Z oppose each
other (that is, one is repressing and the other is enhancing). There are four
incoherent three-node FFLs (all illustrated below) but a correct answer to the
question need only include one of them.

Direct influence is activating Direct influence is repressing

e /2 marks] A graphlet is similar to a motif, but with the distinction that a
graphlet must be an induced subgraph of the network. An induced subgraph
is one formed by taking a subset of the vertices and all the edges that run
between them. The example below illustrates the distinction.

“Tseie  s-ee

If one were counting motifs, the network at left would be considered to contain
a copy of the three-node feed-forward loop (FFL) whose vertices and edges are
highlighted in red. It would, however, not contain the FFL when regarded as
a graphlet because the subgraph induced by the red vertices (shown at right)
includes two extra edges that aren’t part of the FFL.

'R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon (2002),
Network motifs: simple building blocks of complex networks, Science, 298:824-827. DOI:
10.1126/science.298.5594.824

“N. Przulj, D. G. Corneil, and I. Jurisica (2004), Modeling interactome: scale-free or geometric?,
Bioinformatics, 20:3508-3515. DOI: |10.1093/bioinformatics/bth436


http://dx.doi.org/10.1126/science.298.5594.824
http://dx.doi.org/10.1093/bioinformatics/bth436

The remaining 5 marks are for the following argument.

Consider the adjacency matrix of the regulatory network. If the network is to contain
the graphlet from the exam then there must be some group of five vertices whose
mutual interactions look exactly like those pictured in the diagram. The presence of
the graphlet thus fixes 5 x 5 = 25 of the entries in the network’s adjacency matrix—
one for each entry in the graphlet’s adjacency matrix. On the one hand, if we define
K, to be the number of N-node, E-edge networks that include the graphlet then

Ko— N » 5 » N? - 25
g 5 1 E—4 ’
Here the first factor counts the number of ways to choose the 5 vertices that appear
in the graphlet, the second factor counts the number of ways to choose from among
those five the single vertex that has four outgoing edges and the last factor counts

the number of ways to place the remaining (£ — 4) edges.
On the other hand, there are a total of

e ().

possible N-node, E-edge regulatory networks and so, assigning equal probability to
each, we find that the desired probability is

e (G

S

For the case N =8, F =9 this is

( : ) < | ) ( 5 )
5 1 5
_ 56x5x 1712804 1070190 o

b= ( 64 ) 27540584512 61474519

9

but an answer in terms of binomial coefficients will receive full credit.



A3. This problem relates to Lewis Wolpert’s “French Flag” model of developmental
patterning. A similar problem, but with an arbitrary power-law degradation kinetics,
MP* instead of the M? used here, appeared in the problem sets.

(a) [4 marks] The steady-state concentration profile obeys the ODE

Mg

dz2 D

Substituting the proposed form into this yields
3

(v +1) _ (oz)( v
D

(x + €)v+2 D) (z+ €)%

which in turn implies

v+2=3v or v=1

/2D
2y = (%) o or v = o

Finally, one can use the boundary condition to set e. As M(0) = M, we have

u ~y ¥ 2D
= or = — = _—
T 0re T\ e

(b) [3 marks] The position z7 that forms the boundary between cells of types A
and B satisfies M (x}) = 0 so 6, = v/(x} + €) and thus

and

» _ v
fL’l———G————

01 0, My
(c) [3 marks] By direct calculation
A= bt = (1_1> _ (1_1) _ 2
2 0y M, 0, M by 01
which is clearly independent of My. This means that when M, varies—as it

might if, for example, rates of protein synthesis did—both boundaries 7 shift
by the same amount, preserving the length of the region of cells of type B.



B4. Similar questions about two-species population models have appeared in prob-
lem sets, but this one should be new to students.

The object of study here is the model

dzq T dz, T
— = 1—— d — = 1—— . 4.1
dr o |: 1 -+ ﬁ2$2:| an dr 2 |: 1 + 61%1:| ( )

(a) [3 marks] The ODEs in look similar to the dimensionless forms of the

logistic growth law
% = 5(71(]_ — ZL’l).

But in (4.1) the z; appearing in the population-limiting factor (1 — zy) is
scaled by (1 + Boxs) > 1. Thus the presence of species two acts to increase
the effective carrying capacity for species one. Species one exerts a similar
beneficial influence on dzy/dr and so this model represents two species that
interact to produce mutual benefit.

If either species is left to develop on its own it would have a stable attracting

equilibrium population at z; = 1.

(b) [6 marks] A null cline is a locus on which one or the other of the derivatives
vanish. Here

d
ﬂ:() = 21 =0o0r x; =1+ Boxy,
dr

while d
2:0 = xp=0o0rz9 =1+ [127.
dr

Figure includes all the sets of null clines requested in the problem.

(c) [5 marks] If we define g;(z1, z2) so that dz;/dr = gj(x1, x2) then

991 Ogq1 (1 _ L) _ Part

A | On 0w | _ L+ By (14 Barz)? (4.2)
992 092 Pz T
83:1 81'2 (1 + 511'1)2 1+ 61371

An equilibrium with 27, 25 > 0 arises from the intersection of the null clines
x1 =1+ Paxy and  zo =1+ [,
which implies that

* *
1 + ngg 1 + 511”1(

Putting these relationships into (4.2)) yields the desired result:

(1 B
A_<51 _1>.



(d) /8 marks] The equilibria of (4.1)) are (0, 0), (0,1), (1,0) and

* ok 1+ﬁ2 1+61
(e, #3) = (1—ﬁlﬁ2’ 1—51@2)' (4:3)

As the 3; are positive, the only way that the equilibrium populations in (4.3])
can be positive is if 505 < 1. The stabilities of all these equilibria are sum-
marised in Table [B4.1l

(e) [3 marks] If the 152 > 1 then, eventually, any solution with initial data
21(0) > 0 and z2(0) > 0 will enter the region between the two null clines
that aren’t coincident with the coordinate axes. In this region z;(7) and
x9(7T) are monotone increasing and, as the system has no stable fixed points
when (18, > 1, both populations increase without bound. Robert Mayﬂ has
described this as “an orgy of mutual benefaction”.

3 R. M. May et al. (1981), Theoretical Ecology. Principles and Applications, 2nd edition,
Blackwell Scientific Publications. ISBN 0878935150.
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Figure B4.1:  The panel at left shows the pattern of null clines—blue for dxy/dT =0
and red for dxy/dT = 0—for the case where 51y < 1, while the middle panel gives
the story when [1B2 = 1: in the latter case the null clines include a pair of parallel
lines running through the equilibria at (0,1) and (1,0). Finally, the panel at right
illustrates the situation when B8z > 1.

(xF, x3) Linearization — Figenvalues Classification
(0, 0) [ (1) (1) } both positive unstable node
[ —1 By | one positive and
(1,0) 01 one negative saddle
1 0 | one positive and
(0, 1) B —1 ] one negative saddle

stable when present

( 148, 1461 ) -1 B both negative
1=P1f2’ 1=f152 B —1 when /10 < 1.

Table B4.1: The equilibria of along with the linearisation evaluated
at (x7, x3) and the resulting classifications. Note that the stability types of the first
three points, which are always present, do not depend on the parameters at all.



B5.

This year’s coursework will involve an SIR model, but with ODFEs rather than

the discrete-state Markov process considered here. The material on metabolic flux
analysis (parts (a)—(c)) appears in the problem sets, although the specific problem
below does not.

(a)

(b)

[4 marks] The stoichiometric matrix N has one row for each “species” and one
column for each reaction: here the species are the disease states S, I & R. The
entry NN;; is the number of molecules of species ¢ produced when reaction j
occurs: if the reaction consumes species i— if species ¢ appears on the left-hand
side of the reaction—this number may be negative. If we arrange the disease
states in the order {S, I, R} and the reactions in the order {infection, recovery}
the stoichiometric matrix is

-1 0
N = 1 -1
0 1

Of course, other orderings on the reactions and disease states will give rise to
permuted forms of IV, any one of which will be regarded as correct if explained

properly.
[5 marks] The desired conserved quantity is S + I + R. One can obtain it by

performing row-reduction on a copy of N that is augmented at right with a
copy of the identity,

-1 0(1 0O -1 0|1 0 0
N = 1 =110 1 0| — 0 -1|{1 1 0|,
0 1]0 01 0 0]1 11

and then noting that the bottom row consists entirely of 1’s.

[4 marks] The rank is the number of linearly independent rows and a suitable
decomposition is

10
N:LNR:[ﬁ)]NR: 0 1 {_1 _ﬂ
-1 -1

where Ng consists of a pair of linearly independent rows from N. Here I've
used the first two rows, but students will receive full credit for any answer in

which Ny consists of a pair of linearly independent rows from N, L has the
specified form and N = LNg.

[3 marks] The table below lists all possible states consistent with the initial
condition.

oo o~ —ltn
O = N O N
N RO~ Ol



R
= O O
o~ Oo—0
0 | )
)
Figure B5.1:  The nodes here show correspond to all possible states of the system

enumerated in part . The single blue arrow shows the only possibility for further
infection, while the orange arrows show the transitions that occurs when an infected
person recovers. Note that the states with I = 0 are all absorbing states.

(e) [3 marks] Given that S + I + R is conserved, we can specify the state of the
system by giving the number of infected and recovered persons. The graph in
Figure shows all five possible states as well as those transitions between
them which have nonzero rates.

(f) [4 marks] The desired ODEs can be written in matrix form

10 —(ﬁ‘i")/) 0 0 00 710

d 20 o} -2y 0 00 20

7 T = 0 2y —v 0 0 Tl (5.1)
o1 Y 0 0 0 0 o1
702 0 0 Y 00 02

where [ and ~ are the reaction rates.

(g) [2 marks] The asymptotic probabilities form an eigenvector with eigenvalue
0 for the matrix R in (5.1). It’s clear that the states in which no one is
infected are absorbing, and all others are transient, so eventually the only
nonzero components of 7 will be my; and my. Further, as the sum of the 7,
is conserved, we know that with limy; ., mo1(t) + m2(t) = 1.



B6. This is a cut-down version of a harder homework problem that treated the
case of a ring of cells of arbitrary size.

(a) [2 marks] If X; = X, and Y; =Y, forall 1 <j < N then
dX;
dt
and a similar equation holds for dYj/dt. This solution is spatially uniform
because it is independent of j.

= f(X,, Vo) + (X, —2X, — X,) =0

(b) [7 marks] Entries in the linearisation consist of derivatives

0 (dX, Of =21 j =K
k t 0 otherwise
and
0 (AG) _ for =k
Y, \ dt | 0 otherwise

Similar expressions hold for the partial derivatives of dY;/dt. In these latter
expressions the role of f(X;,Y;) is played by g(Xj,Y;) and p is replaced by v.
The linearisation thus has the specified form with

a= afﬂX*,Y* b= ayf|x*,y*
c= axg‘x*,y* d= ayg‘x*,y*
(c) [2 marks]
-2 1 1 2 —6
Dsu = 1 -2 1 -1 | = 3| = —3u
1 1 =2 -1 3
so u is an eigenvector with eigenvalue A\, = —3. A further eigenvector-

eigenvalue pair is [1,1,1]7 with eigenvalue zero.

(d) /8 marks] From the results in part (¢) we have, on the one hand, that

d d| o d_eu
il ) = | | = n,
dt

On the other hand, the linearisation is

156) - (w2 D[]
_ { (al(t) + bn(t) — 3ub(t)) u ] .
(ch(t) + dn(t) — 3vn(t))u



This in turn implies

do

o = (a=3p)0(t) + bn(t)

% = cf(t) + (d—3v)n(t),

which is the result we sought.

(e) [6 marks] The system of ODEs governing 0(¢) and 7(t) is thus linear, so is
unstable provided that the matrix

| (a—3p) b
B = clu (d —3v)

has at least one positive eigenvalue. This happens unless
det(B) = (a —3u)(d—3v) —ed >0 and Tr(B)=a+d—3(p+v)<0.

Suitable values thus include a =d =4, y=v=1/3 and c=b=0.



MATH36022 Solutions: Numerical Analysis 2 Exam 2015

SECTION A
A1l. This is all bookwork.

a) ajj = f w(x)pi(x)p;(x) der and f; = f;f(:v)qbz(x),dx, i,7=0,1,...,n. [2 marks].

b) Suppose there is a nonzero vector z such that Az = 0. Then we have

0=2TA4z= Z Z 20325 = Z Z/ x)zipi(x) ()2 da

1=0 5=0 1=0 5=0

/ Z zigi(x (Z Zj qﬁj dx
2

2

2w

Since the ¢; are linearly independent and z # 0, >")'_ zx¢x(z) is non-zero and hence so is
its norm. Hence 27 Az # 0, a contradiction. Therefore A is nonsingular. [6 marks].

¢) A good choice is to let ¢; be a polynomial of degree i with {¢;(x)} chosen to be orthogonal
with respect to the weight function w(z). Then, A is diagonal (a;; = 0 whenever i # j)
and the normal equations are easy and cheap to solve. [2 marks].

A2. Same exercise with different choices of r(z) was set on an Examples Sheet. The
second part is bookwork.
We are looking for an approximation of the form
ag +a1x + (121‘2 P21 ($)
1+ b g21()

T21 (SU) =

and we require that exp(2x)g21(x) — p21(x) = O(x?). Hence,

422 83 9 4
L4204+ -+ = +0( 1) 1+ biz) — (a0 + a1z + apz?) = O(a?).

Equating the coefficients of 20, 2!, 22, 23 to zero gives:

4
1—ap=0, b1+2—a1 =0, 2b1+2—ay =0, 2b1+§:0.

Hence, ag =1, b1 = —-2/3,a; =2—-2/3=4/3 and aa =2 —4/3 =2/3 so

1+ 4z/3 +222/3
1—2z/3

ro1(x) =

[6 marks]. Polynomials cannot have asymptotes and they are always finite on the finite real
axis and tend to 00 as x — F00. They also have a tendency to oscillate. A Padé approximant
is a ratio of polynomials. A rational function with equal degree numerator and denominator
stays bounded as x — £o0o. A rational function also has poles (the roots of the denominator
polynomial). Rationals can also be free of oscillations. [2 marks for any 2 of these reasons].
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A3.

A4.

Ab.

This question is taken straight from an examples sheet - where it was posed with a
general error tolerance, rather than 1073.

Let f; = f(x;) and set f; = f; + €;, with |¢;| < 1073, Writing the closed rule (Simpson’s rule) as
J(f) = %(fo +4f% + f1) we have

- 1 1
[T(F) = T(H)] = gleo + 46 + a1l < (1077441077 +107%) = 107,
[2 marks]. Similarly, for the open rule,
_ 1 5
[7(f) = (Nl = (2 1078 +10734+2-107%) = . 1073,

[2 marks]. So, for the closed rule, where all the weights are positive, errors of size at most 1073
in the f; values change the approximation to the integral by at most 1073. But for a rule with
weights of both sign, the change in the rule can exceed 1073, [2 marks].

The statement of the condition is bookwork. Very similar examples have been set
as an exercise on an Examples Sheet.

Let f(x,y) be continuous for = € [0,1] and for all y € R. If f satisfies
|f(z,u) — f(z,v)] < Llu—wv| forall xz € [0,1] and all u,v € R,

where L is a finite constant, then a unique solution to the IVP exists. [2 marks].

For (1) we have

|f(z,u) — fz,v)| = [3z + 2u® — (3z + 20%) | = [2(v® — v®)| = 2|(u + v)(u — v)].

Since the term (u + v) is unbounded, the condition is not satisfied. [2 marks]. For (2), since
z € [0, 1], we have

|f(z,u) — f(z,v)| = |e™® (sin(u) — sin(v)) | < €| sin(u) — sin(v)].

Applying the mean value theorem gives |f(z,u) — f(z,v)| < |(u — v)cos(0)| for some 6 € [0, 1]
and so the condition holds with L = 1. [3 marks]

This is bookwork and similar to part of a Section B question from 2012.

(a) For the ¢-step method, we can derive the methods by replacing the integrand in

Tn+1
ner) =yl + [ fy(e) da,
by the polynomial pi(x) of degree k which interpolates f at the k + 1 values
® Ty, Tp_1,...,Tn_ (Bashforth)
® Tpi1,Tn—1,---,Tn_k+1 (Moulton)

where k = ¢ — 1 for A-B and k = ¢ for A-M. The Adams-Bashforth method is explicit (so
has by = 1) and has order ¢. The Adams-Moulton method is implicit but has order ¢ + 1.
Hence the A—B methods are easier to implement but less accurate; the A—M methods are
harder to implement (as a nonlinear equation needs to be solved for y,1) but have better
accuracy. [5 marks]



MATH36022:  Solutions: Numerical Analysis 2 Exam Page 3

(b) Using the two f-step schemes, a simple predictor—corrector method is given by

B6.

i. Predict: Compute 3/20421 using the (explicit) A-B method

ii. Evaluate: ffgr)l = f(xn+1,y7(ggl)
iii. Correct: Use the (implicit) A-M method to compute yfll_gl but using the ‘predicted
value’ fT(L[zL)l in place of f41.

Combining the methods as a predictor-corrector pair maintains the accuracy of the (im-
plicit) Adams—Moulton method, but no nonlinear equations need to be solved.[4 marks]

SECTION B

This is all bookwork. For part (c), the best approximation was constucted in
class via geometric arguments and not via the Equioscillation Theorem.

(a) The leading term of T, 1(z) is 2"2""! [1 mark] and the extremal values are attained

at the n + 2 points
xi:cos( o >,i:0,1,...,n+1,
n+1

(and the sign alternates). [2 marks]

(b) An alternant is a set of (at least) n + 2 points xg,Z1,...,Tnt+1, With a < g < x1 <
-oo < Tpt1 < b, such that

|f(xi) — pn(xi)] = | f — Pnlloo, 1=0:n+1

and
f(xi) = pu(zs) = _(f(xiJrl) —pn($i+1)), 1=0:n.
[3 marks]

(c) Let m = minge(_y,1) f(x) and M = max,¢c_y 1) f(z). po =c = $(m+ M). [1 mark]

With this choice ||f — pollec = ¢ —m = M — ¢ = $(M —m). At any point = where
f(z) = m, we have f(z) —c = 3(m — M) = —||f — po|ls and at any point = where
f(z) = M, we have f(z) —c = 4(M —m) = +||f — po||os- There is at least one point
in [—1,1] where f(z) = m and at least one point where f(x) = M. Hence, py = ¢ has
a 2-point alternant. [3 marks]

(d) We have f(z) — gn(z) = 27" Th4+1(z). Since |Th41(z)| < 1, we have || f — ¢ulloc =27
This is attained at points where T),41(z) = £1. By part (a), we know that there exist
n+ 2 points where 7}, 41 (x) = £1 and hence there are n+2 points where f(z)—q,(z) =
IIf = gnlloo = 27™. The sign of f(z) — g,(x) also alternates at these points and so g, is
a best Lo, approximation. [4 marks]

(e) Since "1 — g, (z) = 0 — 27"T,,11(x) in part (d), saying that g,(z) is the best Lo
approximation to ™! is equivalent to saying that 2777}, 1(z) has the smallest L,
norm, of all monic polynomials of degree n + 1. [2 marks]
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Consider || f — pnllco. Unfortunately, we can’t control the term with &, but we can try
to position the interpolation points x; so that

Mo (2 = i) [l

is as small as possible. Since IT"" , (z — z;) is also a monic polynomial of degree n + 1,
part (d) tells us that we should choose {z;}I' , as the n + 1 roots of the polynomial
Ty+1(z). [2 marks] With uniformly spaced points, |11}, (z — z;) ||co may blow up as
n — oo. However, if we use Chebyshev points then

T g (x — 24) [loo = 27" — 0 as n — 0.

[2 marks]

B7. All bookwork. Questions like (c) with more complicated weight functions have
been set as exercises. Hint is given in (a) so that (b) is still accessible.

(a) In Gauss quadrature, the n weights are determined by making the rule exact for poly-
nomials of degree up to n—1. So, if p,_1(x) is a polynomial of degree n—1 or less, then,
expressing p,—1(z) in its Lagrange interpolating form, we have (with f; = pp—1(z;))

/Ibw(x)pn—1(x) de = / Zfl J(@) do = Zfl/ () dr,

where [;(z) is the Lagrange interpolating polynomial of degree n — 1 satisfying l;(z;) =
0;;. This shows that we should take

w; = /abw(:v)li(:c) dzx.

[4 marks]

(b) Let f be a polynomial of degree < 2n —1. Write f(z) = q(z)dn(z) + r(x), where ¢ and
r are polynomials of degrees < n — 1. Then

b b
I(f) = /w(m)q(a:)qbn(x)da: —i—/ w(x)r(z) de,

= 0 by orthogonality
since g(z) = Y10 @iy

szq Z; ¢n xz +sz xz

~~

= 0 because the z;
are the zeros of ¢,

Now f (z)dx = >, wir(z;), by the choice of the weights w;, and since r has
degree S n— 1 so I(f) = Gn(f), as required. [8 marks]

(¢) We have
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fl@) | 1(f) Ga(/f)

1 2 w1 + wa (1)
x 0 wiry + wazy  (2)
22 | 2/3  wix? + w3 (3)
3 0wz +wory (4)

[3 marks]. Let ¢2(7) = (x — x1)(x — 22) = 2% + az + b. Then the linear combination
(3) +a(2) + b(1) gives
2 1
3 P2 =wig(n1) twed(az) =0 = b=-=.
Similarly, (4) + a(3) 4+ b(2) gives %a =0,s0a=0. Thus ¢o(x) = 2% — % sox; = —1/V3
and x2 = 1/4/3 [3 marks]. Then (2) gives w; = wy and (1) yields w; = wy = 1.
[2 marks].

B8. This is all mainly bookwork. Part (d) is unseen in that absolutely stability was
talked about for a specific method with specific constants, not the general one.

(a) The truncation error is the remainder when the exact solution y(z,,) is substituted for

Yn in the numerical method. If 7(h) = O(RP*!) then we say the method is order p.
[3 marks]

(b) Substituting y(z,) for y, and subtracting the right-hand side from the left-hand side

gives:
T(h) = y(l'n-&-l) - y(xn) - hblf(xna y(xn)) - hb2f(xn + Cgh, y(xn) + ha21f($n, y(l‘n)))
[2 marks]| Noting that f(zn,y(z,)) = ¢/ (x,) then gives

T(h) = y(anrl) - y(mn) - hbly/(xn) - thf(xn + c2h, y($n) + ha21y/(xn))' [1 mark]

(c) We need to show that 7(h) is O(h®) (i.e., that the terms in h° h and h? cancel out).

Using a Taylor series expansion for y(x,1) and the hint gives

2
Yonsn) = ylan) + by (n) + o/ () + O

h? (0f Of 3
= y(zn) + My (2n) + 5 <3x + oy > |(@nw(en)) +OR).

[3 marks] Next, use a Taylor series in two dimensions:

(-t eah, y(a) + hany/ (22)) = 3/ (22) + e2h o2 (2, ()

+ ha21y/(xn)a£(xnv y(xn)) + O(hQ)

[3 marks] Substituting both expansions into the expression for 7(h) in part (b) gives

R (0f Of

7(h) = [y(xn) + hy' (x,) + 5 <8:c + o > {(xn,y(wn)) + O(h?’)] —y(zp) — hb1y' (z2)

—hbo (y'(xn) + Cthi(x”’ y(zp)) + ha1y/ (x,) gi(xn, y(xn)) + O(h2)> )
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Rearranging then gives
/ 2 of
7(h) =h(1—=b1 —b2)y'(zn) + h7 | 5 — b2c2 %($nay(xn))

1 0
+ h? <2 — b2a12> <a£f> ‘(zn,y(xn)) + O(h3)

Equating the coefficients in front of  and h? to zero then gives the result. [4 marks]

(d) Appling the RK method to the test problem gives

Yn+1 = Yn + hb1 Ay + hbo X (yn + haz1 Ayy)
= un (1 + AR (by + by) + (AR)? b2a21) .

For an order two method, using the result from part (c) gives
YUnil = Yn (1 + Ah+ (AR)? /2) .
Hence, the method is absolutely stable if [p(Ah)| < 1 where
p(Ah) =1+ M+ (MR)? /2.

[4 marks]
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SECTION A
Answer ALL four questions
Al.
a) The mean is a + bt + ct? which depends on ¢, so not stationary. (bonus mark if mentions
b, c # 0 for this conclusion). [2 marks]
b)
Yi =Xt — X1
=b+c(2t—1)+¢e —er
So,
(1-B)2X, =Y, - Vi,
=b+c2t—1)+e—eo1—(b+c(2(t—1) — 1)+t —e1-2)
=2c+e— 261+ 9)
=2c+ (1 - B)%;.
So, {(1 — B)?X;} is MA(2). [4 marks]
¢) The moving average polynomial has roots equal to 1, so is not invertible. [2 marks]
Qu. Total
8 marks
A2.
a) (1—B%)(1-¢B)X; = (1+6B'?),. [3 marks|
b) Xy — ¢Xi1 — Xy12 + ¢ X153 = & + Oy 1o [3 marks|
Qu. Total
6 marks

A3. (1-B)(1-02B)X; =¢
Only the first two ’s are required. I have given more for my reference.
We have (1 — B)(1 —0.2B) =1—1.2B + 0.2B?,
1=(1-12B+02B*)(1+¢1B+¢yB*+¢3B°+--+)
= (1+ 1B+ 14B° +¢sB + -+ )
—1.2B(1 4+ ¢ B 4+ 9B +3B® 4 --.)
+0.2B%(1 + ¢, B + 1,B? + 3B + - - -)
= (1+ B+ ¢oB? +¢3B* 4 - - -)
—12(B+ B +¢,B* + - -+)
+0.2(B* + ¢, B* +---).
Comparison of coefficients at B¥ gives 1), — 1.2 = 0, ¥y — 1.2¢1 + 0.2 = 0, and, for k > 3,
Y — 1.2¢05_1 + 0.2¢0,_5 = 0. So,

P =1.2
Py =120 —02=12-02=124
Py =121y — 020y =1.2x1.24 — 0.2 x 1.2 = 1.248

2 of 11 P.T.O.
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Horizon: h=1 h=2 h=3
Variance: 4 9.76  15.91040
Qu. Total
8 marks
M.
a) We have
}/;g - (1 - B)Xt - Xt - Xt—l-
So,
EY, =E(1-B)X,=EX,~EX, ;= p—p=0.
Then
COV(K&; Y;‘/fk) = E(Xt - Xt71>(Xt7k - Xt7k71>
=Yk = Vk—1 T VT = Vet1
= 29% — (V=1 + Yr1),
as required.
b) Obviously, EY; = 0, a constant. In part (a) we saw that Cov(Y}, Y;_x) does not depend
on t. Hence, {Y;} is stationary.
c) Since Y; = (1 — B)X;, it follows that ¢(B)Y; = (1 — B)¢(B)X; = (1 — B)#(B)e; So,
¢(B)Y; = (1 - B)f(B)e,
ie. {Y;} is ARMA with the same autoregression part as that of {X;} and moving
average part (1 — B)6(B).
Qu. Total
10 marks

3of 11 P.T.O.
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SECTION B
Answer 2 of the 3 questions

a) i) (Bookwork) A stationary process, {X;}, with mean y = E X; is said to be an
autoregressive process of order p, AR(p), if it can be represented as

Xy —p= Z¢i(Xt—z' — ) + & (1)
i—1

where {&;} is WN(0,0?), E X;e, = 0 whenever ¢ < s, the parameters ¢; are such
that all roots of the polynomial

O(z) =1—rz— - — Pp2°

have moduli greater than one.

ii) (Bookwork) ¢(z) above.

iii) (Bookwork) The innovations are orthogonal to past values of the process, i.e.
E X;e, = 0 whenever t < s,

iv) (Bookwork) For an autoregression of order p, 8y = 0 for k > p.

v) (Bookwork) (There are various ways to do this.) As a possible predictor of X; from
Jj > p—+ 1 past values, consider the linear combination

P J
X, :/L‘FZ(bi(Xtﬂ'—,u) + Z 0 x (Xp—i — p).

i=1 i=p+1

We have X; = X, + ;. The orthogonality of £, to past X,’s (see above) means
that e; is orthogonal to all predictor variables used in X;. By the orthogonality
property of the prediction error it follows that X, is the optimal linear predictor.
vi) Partial autocorrelation function can be used to identify AR models. If the sample
pacf is small beyond some lag p (cut-off property), then this suggests AR(p). Useful
tool, especially as starting point but should be used together with other tools. Also,
usage straightforward for AR processes only.
b) pr=p1= #

B2 = b where b is the coefficient at X;_o in the linear predictor of X; from X;_1, X;_o,

i.e. solution of the 2nd order Yule-Walker equations. (Can be obtained also from first

principles.)

pr—a—bpr =0
pa—ap; —b=0

—p?
1—p2 -

Solving we get, Sy = b= p
1

4 of 11 P.T.O.
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2 marks|

[2 marks]
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[6 marks]
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Qu. Total
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a) Xt—QXt_l—f—Xt_Q = 6t_0-816t—1+0~386t—2 or Xt = 2Xt—1_Xt—2+5t_0-816t—1+0~385t—2
2 marks|

b) I(2) since two differences are needed to make it stationary. [2 marks]

c¢) For t = T+ k the above equation gives Xry, = 2X7y 51— Xripoteriy—0.8ler 1+
0.38¢11 k2, which gives

since the remaining terms are orthogonal to the past.
This is a homogeneous linear difference equation of order two. Its characteristic poly-
nomial is (1 — z)? which has a repeated root equal to 1. So the general solution is

XT+k|T ..... 1 = a+ bt,

with initial values

=220 —u) — v
= 3v — 2u,

a+3b=2v—u
a+4b=3v—2u

Solving we get a = 2u — v, b= —u +v.
This can be solved also by writing down the first few predictors and carefully examining
them. [8 marks|

d) A straight line, this was found above. [2 marks]
e)

=2x159—-152—-0.81 x 0.586 + 0.38 x (—1.286)

= 15.6367

..........

=2 x 15.6367 — 15.9 + 0.38 x (0.586)
= 15.5961

= 215.5961 — 15.6367
= 15.5555

For the variances, we need the first few coefficients of the infinite MA representation,
X =t + 161 + Yagi_9 + Ys3e4_3 + - - - . Consider,

(1 =22+ 23 (1 + 12 + g2 +1h32° + -+ ) =1 —0.812 + 0.382?%,
5 of 11 P.T.O.
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expand left-hand side,
1+ (1 — 2)z 4+ (1= 201 +92) 2% + (5 — 20 +991)2° 4+ - - = 1 — 0.812 + 0.382%.

Comparing coefficients gives

by =2 — 081
Wy = 2y — 1+ 0.38
Py = 29y — Uy

So, Yy = 1.19, ¢y =1, 93 = 0.81.

Hence the variances of the prediction errors for the k = 1,2,3 are 1, 1 +1.19% = 2.4161,

and 1+ 1.19% + 12 = 3.4161.

(15 is redundant, don’t need it.) [10 marks]

Qu. Total
24 marks

6 of 11 P.T.O.
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Br.

a) The raw time series shows a trend similar to that of random walk. So, differencing
is necessary. No seasonality. The autocorrelation function decreases slowly (after four
years still relatively large correlation), supporting the need for differencing.
Differenced series seems to have constant level. There is one very small value in 1992,
probably the difference between the third and second quarters. Autocorrelations are
small, except for p; which is marginally significant on the 5% level.

So, ARIMA(0,1,0) and ARIMA(0,1,1) models seem plausible.

b) i) The act’s of the residuals are small (non-significant). The Ljung-Box test supports
the white noise-ness of the residuals (large p-values, whatever its parameter). The
plot of the residuals shows one outlying value which may be influencing the fit and
the model choice. There is a hint for clustering of positive and negative values in
the residuals.

The standard errors of the MA coefficients are about half of their magnitudes, not
bad although the MA(2) is just on the border of a 95% CI. No clear evidence of
overfitting.

ii) Overall, ARIMA(0,1,1) seems best among the models with 1 difference Its aic =
-45.35 and o2 estimated as 0.01587.

Overall, ARIMA(0,2,2) seems best among the models with 2 differences with aic
= -38.73 and o? estimated as 0.01678.

Comparison of the AICs of these two models should be made with caution since
they represent different orders of nonstationarity. The ARIMA(0,1,1) model gives
also a smaller residual variance and is more parsimonious. So we select it.

iii) The big through in the differenced series and the residuals suggest that improve-
ments are possible. One may drop the observation giving the outlier in the residuals
(and maybe all preceding observations) and refit the model.

One might also try to fit a model to the data with the offending stretch dropped.
If that does not help, then another class of moels should be tried since it is clear
that ARIMA cannot be improved further.

¢) Quarter 4, 2000 is just after the last obervation. So, the point prediction is 2 x 3.5310 —
3.3522 = 3.7098. From the output for this model, 62 = 0.02415. So, a 95% prediction
interval is 3.7098 + 1.961/0.02415 = (3.405211,4.014389).

d) i)
(1-B)Xi=b1+e& (2)
(1 -0.833B)b;—y = 0.167(1 — B) X;_;. (3)

ii) From the above,
bi_1 = 0.167(1 — B)(1 — 0.833B) ' X,_;.
Put this into the first eq. above and simplify
(1-B)X;=b_1+¢

=0.167(1 — B)(1 — 0.833B) ' X;_; + ¢
=0.167(1 — B)(1 — 0.833B) 'BX; + &,

7of 11 P.T.O.
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[4 marks|

[4 marks|

[2 marks]

[4 marks|

[1 mark]



So,

So,

Hence,

as required.

MATH48032

(1-B)X, —0.167(1 — B)(1 — 0.833B) 'BX, = ¢

= (1-B)(1-0.167(1 — 0.833B) 'BX,)
= (1-B)(1-0.833B — 0.167B)(1 — 0.833B) ' X,
= (1-B)*(1 - 0.833B) "' X,.

(1—B)2X, = (1 — 0.833B)z,,
[5 marks|

Qu. Total
24 marks

8 of 11 P.T.O.



Answer ALL questions

CB.

SECTION C

MATH48032

a) (Bookwork) {n;} is i.i.d.(0,1) and such that 7; is independent of the past of {X;} (i.e.

of ‘/—-t—l)-

b) Using the independence of 7, from the past we get:

E<Xt+h’E) = ¢E(Xt+hfl|f't) + E(5t+h|-7:t) =

c¢) (Bookwork) Let A > 1. Then

E(5§+h|~7:t)

2
t

g

Il
0 oo

‘72 h’]:t)

as required.

E(Ut2+h77t+h|]'—t)
(E(0 misnl Fern—1)|F2)
(Ut2+ (nt+h’}—t+h 1)|F)
(07 (Enn) 1)

(

(since En7,,, = 1),

PE(Xin | F) = = ¢" X,

using the GARCH equation

8 q

(by iterated expectations rule)
(since o7, € Frin-1)

(since 744 is independent of Fyyp,_1)

d) Taking conditional expectation on both sides of the volatility equation we get

E(Ut2+h|]:t) =w+to E(5§+h—1|]:t) + Qs E(5§+h—2|}_t>-

For fixed ¢, this is a difference equation with E(2|F;) =

(Xim1 — 0Xi2)”

(X

—¢X; 1)? and E(e2_,|F) =

e) (Bookwork) Take expected values on both sides of the volatility equation, use station-

arity and c) to get

Hence, 0% = w/(1 — a1 — ay).

2

90of11

2

o :w+a102+oc20.

P.T.O.
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[4 marks|

[4 marks|

[4 marks|

[4 marks]
Qu. Total

20 marks
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.

a) i) The Ljung-Box statistics show that there is no serial correlation in the log return;

Q(12) = 9.49 with p-value 0.66.

ii) There is, however, significant ARCH effect because Q(12) = 32.17 with p-value
0.001 for the squares (i.e. the squares are correlated).

iii) The expected log return is not zero, because t-test gives t = 2.93 with p-value
0.004.

iv) The t-test for the mean is derived under assumption for independence, which is
violated since the squares are correlated. (This is not the only possible answer.)

b) The fitted model is

X; = 0.015 + &
€ = O
e ~ N(07 1)

o7 = 0.000253 + 0.136¢;_, + 0.84407 ;.

The Jarque-Berra and Shapiro-Wilks tests clearly suggest that the conditional distri-
bution is not normal.

Except for the normality assumption, the model seems adequate. See Ljung-Box tests
for standardized residual series and its squared series.

Alll coefficients significant at 5% level.

¢) 1) The fitted model is
Xy =0.0126 + ¢,

€t = Oty
1, ~ skew-t with 10 d.f. and skew € =0.888
o7 = 0.000291 + 0.108¢7 | + 0.863707_,.

ii) Similarly to the previous model, the standardised residuals and their squares are
uncorrelated. The adequateness of the conditional distribution cannot be inferred
from the given information. The skewness is not significantly different from one
(see below).

iii) For symmetric distribution the skew parameter is equal to one. Based on results,
we have t = (0.888 — 1)/0.06 = 1.87, whose absolute value is less than 1.96 (the
0.975 quantile of N(0,1)). Therefore, we cannot reject the null hypothesis that the
log return series has a symmetric distribution.

iv) I would produce a qg-plot of the standardised residuals against the quantiles of the
fitted skew-t distribution.

d) The fitted model (not requested) is
X, =0.0128 + ¢,
€t = O
m ~ N(0,1)
o? = 0.000292 + 0.1256(|e;_1| — 0.235,_1)* + 0.839507 ;.

10 of 11 P.T.O.
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[6 marks|

[7 marks|
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The parameter interpreted as leverage is y. (This is another way of modelling skewness.)
From the output, its estimate is 4 = 0.23. The p-value shows significance at the 5%
level. [3 marks]

Qu. Total
20 marks

END OF EXAMINATION PAPER
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SECTION A
Answer ALL four questions
Al.
a) The mean is a + bt + ct? which depends on ¢, so not stationary. (bonus mark if mentions
b, c # 0 for this conclusion). [2 marks]
b)
Yi =Xt — X1
=b+c(2t—1)+¢e —er
So,
(1-B)2X, =Y, - Vi,
=b+c2t—1)+e—eo1—(b+c(2(t—1) — 1)+t —e1-2)
=2c+e— 261+ 9)
=2c+ (1 - B)%;.
So, {(1 — B)?X;} is MA(2). [4 marks]
¢) The moving average polynomial has roots equal to 1, so is not invertible. [2 marks]
Qu. Total
8 marks
A2.
a) (1—B%)(1-¢B)X; = (1+6B'?),. [3 marks|
b) Xy — ¢Xi1 — Xy12 + ¢ X153 = & + Oy 1o [3 marks|
Qu. Total
6 marks

A3. (1-B)(1-02B)X; =¢
Only the first two ’s are required. I have given more for my reference.
We have (1 — B)(1 —0.2B) =1—1.2B + 0.2B?,
1=(1-12B+02B*)(1+¢1B+¢yB*+¢3B°+--+)
= (1+ 1B+ 14B° +¢sB + -+ )
—1.2B(1 4+ ¢ B 4+ 9B +3B® 4 --.)
+0.2B%(1 + ¢, B + 1,B? + 3B + - - -)
= (1+ B+ ¢oB? +¢3B* 4 - - -)
—12(B+ B +¢,B* + - -+)
+0.2(B* + ¢, B* +---).
Comparison of coefficients at B¥ gives 1), — 1.2 = 0, ¥y — 1.2¢1 + 0.2 = 0, and, for k > 3,
Y — 1.2¢05_1 + 0.2¢0,_5 = 0. So,

P =1.2
Py =120 —02=12-02=124
Py =121y — 020y =1.2x1.24 — 0.2 x 1.2 = 1.248
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Horizon: h=1 h=2 h=3
Variance: 4 9.76  15.91040
Qu. Total
8 marks
M.
a) We have
}/;g - (1 - B)Xt - Xt - Xt—l-
So,
EY, =E(1-B)X,=EX,~EX, ;= p—p=0.
Then
COV(K&; Y;‘/fk) = E(Xt - Xt71>(Xt7k - Xt7k71>
=Yk = Vk—1 T VT = Vet1
= 29% — (V=1 + Yr1),
as required.
b) Obviously, EY; = 0, a constant. In part (a) we saw that Cov(Y}, Y;_x) does not depend
on t. Hence, {Y;} is stationary.
c) Since Y; = (1 — B)X;, it follows that ¢(B)Y; = (1 — B)¢(B)X; = (1 — B)#(B)e; So,
¢(B)Y; = (1 - B)f(B)e,
ie. {Y;} is ARMA with the same autoregression part as that of {X;} and moving
average part (1 — B)6(B).
Qu. Total
10 marks
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SECTION B
Answer 2 of the 3 questions

a) i) (Bookwork) A stationary process, {X;}, with mean y = E X; is said to be an
autoregressive process of order p, AR(p), if it can be represented as

Xy —p= Z¢i(Xt—z' — ) + & (1)
i—1

where {&;} is WN(0,0?), E X;e, = 0 whenever ¢ < s, the parameters ¢; are such
that all roots of the polynomial

O(z) =1—rz— - — Pp2°

have moduli greater than one.

ii) (Bookwork) ¢(z) above.

iii) (Bookwork) The innovations are orthogonal to past values of the process, i.e.
E X;e, = 0 whenever t < s,

iv) (Bookwork) For an autoregression of order p, 8y = 0 for k > p.

v) (Bookwork) (There are various ways to do this.) As a possible predictor of X; from
Jj > p—+ 1 past values, consider the linear combination

P J
X, :/L‘FZ(bi(Xtﬂ'—,u) + Z 0 x (Xp—i — p).

i=1 i=p+1

We have X; = X, + ;. The orthogonality of £, to past X,’s (see above) means
that e; is orthogonal to all predictor variables used in X;. By the orthogonality
property of the prediction error it follows that X, is the optimal linear predictor.
vi) Partial autocorrelation function can be used to identify AR models. If the sample
pacf is small beyond some lag p (cut-off property), then this suggests AR(p). Useful
tool, especially as starting point but should be used together with other tools. Also,
usage straightforward for AR processes only.
b) pr=p1= #

B2 = b where b is the coefficient at X;_o in the linear predictor of X; from X;_1, X;_o,

i.e. solution of the 2nd order Yule-Walker equations. (Can be obtained also from first

principles.)

pr—a—bpr =0
pa—ap; —b=0

—p?
1—p2 -

Solving we get, Sy = b= p
1

4 of 11 P.T.O.
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[2 marks]
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a) Xt—QXt_l—f—Xt_Q = 6t_0-816t—1+0~386t—2 or Xt = 2Xt—1_Xt—2+5t_0-816t—1+0~385t—2
2 marks|

b) I(2) since two differences are needed to make it stationary. [2 marks]

c¢) For t = T+ k the above equation gives Xry, = 2X7y 51— Xripoteriy—0.8ler 1+
0.38¢11 k2, which gives

since the remaining terms are orthogonal to the past.
This is a homogeneous linear difference equation of order two. Its characteristic poly-
nomial is (1 — z)? which has a repeated root equal to 1. So the general solution is

XT+k|T ..... 1 = a+ bt,

with initial values

=220 —u) — v
= 3v — 2u,

a+3b=2v—u
a+4b=3v—2u

Solving we get a = 2u — v, b= —u +v.
This can be solved also by writing down the first few predictors and carefully examining
them. [8 marks|

d) A straight line, this was found above. [2 marks]
e)

=2x159—-152—-0.81 x 0.586 + 0.38 x (—1.286)

= 15.6367

..........

=2 x 15.6367 — 15.9 + 0.38 x (0.586)
= 15.5961

= 215.5961 — 15.6367
= 15.5555

For the variances, we need the first few coefficients of the infinite MA representation,
X =t + 161 + Yagi_9 + Ys3e4_3 + - - - . Consider,

(1 =22+ 23 (1 + 12 + g2 +1h32° + -+ ) =1 —0.812 + 0.382?%,
5 of 11 P.T.O.
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expand left-hand side,
1+ (1 — 2)z 4+ (1= 201 +92) 2% + (5 — 20 +991)2° 4+ - - = 1 — 0.812 + 0.382%.

Comparing coefficients gives

by =2 — 081
Wy = 2y — 1+ 0.38
Py = 29y — Uy

So, Yy = 1.19, ¢y =1, 93 = 0.81.

Hence the variances of the prediction errors for the k = 1,2,3 are 1, 1 +1.19% = 2.4161,

and 1+ 1.19% + 12 = 3.4161.

(15 is redundant, don’t need it.) [10 marks]

Qu. Total
24 marks
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Br.

a) The raw time series shows a trend similar to that of random walk. So, differencing
is necessary. No seasonality. The autocorrelation function decreases slowly (after four
years still relatively large correlation), supporting the need for differencing.
Differenced series seems to have constant level. There is one very small value in 1992,
probably the difference between the third and second quarters. Autocorrelations are
small, except for p; which is marginally significant on the 5% level.

So, ARIMA(0,1,0) and ARIMA(0,1,1) models seem plausible.

b) i) The act’s of the residuals are small (non-significant). The Ljung-Box test supports
the white noise-ness of the residuals (large p-values, whatever its parameter). The
plot of the residuals shows one outlying value which may be influencing the fit and
the model choice. There is a hint for clustering of positive and negative values in
the residuals.

The standard errors of the MA coefficients are about half of their magnitudes, not
bad although the MA(2) is just on the border of a 95% CI. No clear evidence of
overfitting.

ii) Overall, ARIMA(0,1,1) seems best among the models with 1 difference Its aic =
-45.35 and o2 estimated as 0.01587.

Overall, ARIMA(0,2,2) seems best among the models with 2 differences with aic
= -38.73 and o? estimated as 0.01678.

Comparison of the AICs of these two models should be made with caution since
they represent different orders of nonstationarity. The ARIMA(0,1,1) model gives
also a smaller residual variance and is more parsimonious. So we select it.

iii) The big through in the differenced series and the residuals suggest that improve-
ments are possible. One may drop the observation giving the outlier in the residuals
(and maybe all preceding observations) and refit the model.

One might also try to fit a model to the data with the offending stretch dropped.
If that does not help, then another class of moels should be tried since it is clear
that ARIMA cannot be improved further.

¢) Quarter 4, 2000 is just after the last obervation. So, the point prediction is 2 x 3.5310 —
3.3522 = 3.7098. From the output for this model, 62 = 0.02415. So, a 95% prediction
interval is 3.7098 + 1.961/0.02415 = (3.405211,4.014389).

d) i)
(1-B)Xi=b1+e& (2)
(1 -0.833B)b;—y = 0.167(1 — B) X;_;. (3)

ii) From the above,
bi_1 = 0.167(1 — B)(1 — 0.833B) ' X,_;.
Put this into the first eq. above and simplify
(1-B)X;=b_1+¢

=0.167(1 — B)(1 — 0.833B) ' X;_; + ¢
=0.167(1 — B)(1 — 0.833B) 'BX; + &,

7of 11 P.T.O.
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[4 marks|

[4 marks|

[2 marks]

[4 marks|

[1 mark]



So,

So,

Hence,

as required.

MATH48032

(1-B)X, —0.167(1 — B)(1 — 0.833B) 'BX, = ¢

= (1-B)(1-0.167(1 — 0.833B) 'BX,)
= (1-B)(1-0.833B — 0.167B)(1 — 0.833B) ' X,
= (1-B)*(1 - 0.833B) "' X,.

(1—B)2X, = (1 — 0.833B)z,,
[5 marks|

Qu. Total
24 marks

8 of 11 P.T.O.



Answer ALL questions

CB.

SECTION C

MATH48032

a) (Bookwork) {n;} is i.i.d.(0,1) and such that 7; is independent of the past of {X;} (i.e.

of ‘/—-t—l)-

b) Using the independence of 7, from the past we get:

E<Xt+h’E) = ¢E(Xt+hfl|f't) + E(5t+h|-7:t) =

c¢) (Bookwork) Let A > 1. Then

E(5§+h|~7:t)

2
t

g

Il
0 oo

‘72 h’]:t)

as required.

E(Ut2+h77t+h|]'—t)
(E(0 misnl Fern—1)|F2)
(Ut2+ (nt+h’}—t+h 1)|F)
(07 (Enn) 1)

(

(since En7,,, = 1),

PE(Xin | F) = = ¢" X,

using the GARCH equation

8 q

(by iterated expectations rule)
(since o7, € Frin-1)

(since 744 is independent of Fyyp,_1)

d) Taking conditional expectation on both sides of the volatility equation we get

E(Ut2+h|]:t) =w+to E(5§+h—1|]:t) + Qs E(5§+h—2|}_t>-

For fixed ¢, this is a difference equation with E(2|F;) =

(Xim1 — 0Xi2)”

(X

—¢X; 1)? and E(e2_,|F) =

e) (Bookwork) Take expected values on both sides of the volatility equation, use station-

arity and c) to get

Hence, 0% = w/(1 — a1 — ay).

2

90of11

2

o :w+a102+oc20.
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[4 marks|

[4 marks|

[4 marks|

[4 marks]
Qu. Total
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.

a) i) The Ljung-Box statistics show that there is no serial correlation in the log return;

Q(12) = 9.49 with p-value 0.66.

ii) There is, however, significant ARCH effect because Q(12) = 32.17 with p-value
0.001 for the squares (i.e. the squares are correlated).

iii) The expected log return is not zero, because t-test gives t = 2.93 with p-value
0.004.

iv) The t-test for the mean is derived under assumption for independence, which is
violated since the squares are correlated. (This is not the only possible answer.)

b) The fitted model is

X; = 0.015 + &
€ = O
e ~ N(07 1)

o7 = 0.000253 + 0.136¢;_, + 0.84407 ;.

The Jarque-Berra and Shapiro-Wilks tests clearly suggest that the conditional distri-
bution is not normal.

Except for the normality assumption, the model seems adequate. See Ljung-Box tests
for standardized residual series and its squared series.

Alll coefficients significant at 5% level.

¢) 1) The fitted model is
Xy =0.0126 + ¢,

€t = Oty
1, ~ skew-t with 10 d.f. and skew € =0.888
o7 = 0.000291 + 0.108¢7 | + 0.863707_,.

ii) Similarly to the previous model, the standardised residuals and their squares are
uncorrelated. The adequateness of the conditional distribution cannot be inferred
from the given information. The skewness is not significantly different from one
(see below).

iii) For symmetric distribution the skew parameter is equal to one. Based on results,
we have t = (0.888 — 1)/0.06 = 1.87, whose absolute value is less than 1.96 (the
0.975 quantile of N(0,1)). Therefore, we cannot reject the null hypothesis that the
log return series has a symmetric distribution.

iv) I would produce a qg-plot of the standardised residuals against the quantiles of the
fitted skew-t distribution.

d) The fitted model (not requested) is
X, =0.0128 + ¢,
€t = O
m ~ N(0,1)
o? = 0.000292 + 0.1256(|e;_1| — 0.235,_1)* + 0.839507 ;.

10 of 11 P.T.O.
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The parameter interpreted as leverage is y. (This is another way of modelling skewness.)
From the output, its estimate is 4 = 0.23. The p-value shows significance at the 5%
level. [3 marks]

Qu. Total
20 marks

END OF EXAMINATION PAPER
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MATH3/4/68052 Solutions

A1l (a) The NB(2, p) distribution with pmf [Unseen]

PY =y) = (y+1p’(1-p)?
= exp{ylog(l—p)+2logp +log(y + 1)}

€ exponential family

with parameters § = log(1 — p) and ¢ = 1. The three functions are

b(6) = —2logp = ~2log(1 - ¢¥), a(¢) = ¢, and e(y, ¢) = log(y + 1),

3]
(b) Property 1 of the distribution: E[Y] =¥(0), Var{Y} =b"(0)a(s).
Applying the formulas to b(f) = —2log(1 — €?) and a(¢) = ¢ = 1,
—e? 2¢? 2(1—p)
E[Y]__21—69_1—69_ p
27\ e?(1—e%) —ef(—e?) 2¢? 2(1 -p)
) = (75 i-ap  -ap P

[4]

(¢) The role of the link function ¢ is to transform the mean response p so that g(u) = 7, the linear

predictor. The canonical link is the same function of p as 6 is. [Bookwork]
[4]

(d) From (b), u =2(1 —p)/p, thus

pp=2(1—p), p=ﬁ7 1—p=$~
Then from (a)
6 = log(1 — p) :loguiQ.
Therefore the canonical link is g(p) = log ;f5. [4]
(e) Canonical link means g(u) = 6, thus ¢'(u)9% = 1. Because yu = b/(9), % = v(9) = V(u). Thus

g (1)V(p) = 1. The Fisher scores are

ﬂ: 1 n Tij o -:Ln o -
9P; a(sb)ZV(ui)g’(ui)(y’ i) a(@;%(yz wi), j=1,...,p.

i=1

When differenciating again wrt 5k, y; disappears and the result remains the same after taking expec-

tation because it is not random. Thus the expected and observed Fisher info are identical. [5]



A2 (a) Poisson response log linear model with intercept: [Bookwork]

yi = Wi + &; ~ Pois(u;) independent,

IOg(‘LLl) :ﬂo+ﬂll’“ 1= ].,,TL [3]
(b) The data matrix is
1 Tq
1 i)
X = )
1 =z,
The weight matrix W is diagonal with elements
1 1

w; = ZuiZ)\i,iZL...,n.

V() (ua)? il u?

Therefore
A0 0
W 0 A
0
0 0 A
3]
(¢) The log-likelihood function is
n Yi ,— g
Hi €
@ = Yo ()
i=1
= ) (yilog i — p;) —logyi!
i=1
= Z Yi(Bo + Brzs) — Z ot ogy!.
i=1 i=1
Differentiating w.r.t. 8y and (1,
_ BotBiw; _ Bot+Biz;
Y Yi — e  aal LilYi — Tie .
R PR T T
Setting the partial derivatives to zero, the MLE of (8, 51) must satisfy
Yyr — 1
1 .- 1 . o
Xy o Tp : IR E
Yn — Hn
where p; = efotA®i i =1 ... n. In matrix form,
X'y-w=20
Then
X'WE=XW(XB+W ' y—p) = XWXB+X'(y—p) = X'WX3.
(6]



(d) Differentiating again, the second derivatives

8&0

o - -|

S

i=1

822 -
Z Bo+pBizi
)

i=1

0% _ Z xi660+ﬂlwz g
0BodB pt

¢ 9%

24 824
3[30 3503,31
8B00B1 op7

i eﬂ0+51 z;
2 .
T

Z {E2 Bot+Pizs

are not random. Thus by definition, the expected/observed Fisher information matrix is

[Bookwork]

0 0 1 x
T 1 0 o : 1 2
o o : 0
0 0 Ln 1 Tn
= X'WX
[4]
(e) Using the expression in (b) for the log-likelihood, we have by definition [Bookwork]
Deviance = 2 (yilogy: — ) — 22 yilog i — 0i)
=1 i=1
= QZ(yz IOg P +yz yi)a
i=1 Yi
where g; = 630"’31“, i=1,...,n. The fitted values are exactly y; under the saturated model. [2]
Because the residuals y; — ¢; add up to 0 (part c), the deviance is simply
Deviance = 2 Zyl log .
i=1 Yi
2]



Bl (a) Putting the I'(u, 2) density in exponential family form, [Seen more general]

fly; 1) = eXP{—iy—QIOgM-i-log(‘ly)}
= exp{y(l/lf;Z 10gu+10g(4y)}

with 6 = —1/u, ¢ = 2. The three functions are

a(¢) =1/, b(6) = log jp = —log(—0) and c(y, ¢) = log(4y).

3]
(b) The mean response equals b'(0) = —1/(—0) x (—=1) = —1/0 = p. [2]
The variance function is V (u) = (—1/0) = —(-1)/6? = 1/6% = i, 2]

(¢) (i) The scaled deviance is 15.36/(1/2) = 30.72 on 25 — 2 = 23 is less than the upper tail critical value

X6.05: 23 = 35.172. It is not significant at level 5%. Thus the model provides adequate fit. [4]

(ii) At z = 15, the linear predictor is calculated as
7 = 0.1676 — 0.000364 x 15 = 0.16214,

and the fitted tensile strength is § = 1/0.16214 = 6.1675. [4]

(iii) Standard error of estimated linear predictor

se(7}) = 1/0.052 + 152 x 0.00362 + 2 x 15 x (—0.8678) x 0.05 x 0.0036 = 0.0270.
95% confidence interval for 7:
0.16214 + 1.96 x 0.0270 = (0.10922, 0.21506).
95% confidence interval for p:

(1/0.21506,1/0.10922) = (4.6499,9.1558).



B2 (a) The difference is that fitl has an interaction term +;; in the linear predictor 7;; = p + o + 85 + vi;
while fit0 does not. 2]

(b) When the interaction term is added, the change in deviance is 12.193 on 9 df. The corresponding

P-value is 0.20 > 0.10. Thus the interaction between age and car is not significant at 10%. [4]

(c) When car is added to model with age in it, the change in deviance is 105.284 on 3 df with P-value<

2.2 x 10716, Thus the effect of car is significant at 1% in the presence of age. [4]

(d) The additive model with deviance 12.193 on 9 df is not significant at 10% sig. level (P-value=0.20 >
0.10). It is adequate for the data as far as deviance is concerned. Cannot be simplified further as all

the parameters are significant at 5% (P-values < 0.05). [4]

(e) For an older policy holder (> 35 years) driving a medium engine sized car (1.5-2.0L),

7 = —1.59528 — 0.62887 + 0.45760 = —1.76655

ﬁ':

o 0.1460 (probability of claim).

The variance of 7 (linear predictor) is
0.006902304 — 0.0053429877 — 0.0018941565
— 0.005342988 + 0.0060772730 — 0.0002045798
— 0.001894156 — 0.0002045798 + 0.0034908773
= 0.001587007.

An approximate 95% c.i. for 7 is
—1.76655 £ 1.96/0.001587007 = (—1.844631, —1.688469),

and one for 7 is

1 1
(1 T 1844631 ] 1 61.688469> = (0.1365,0.1560).



B3 (a) The distribution is multinomial with probability function [Bookwork]

n!

PYuu=wyi1,.., Y15 =y15) = , 'ﬂ-%il"'ﬂ-?f]‘]v
Y11 Yrg:
where 7;; are cell probabilities with >, i = 1.
(3]
(b) For independent Y;; ~ Pois(nmy;), Y. = Y11 + -+ + Y5 ~ Pois(n). [Bookwork]
P(Yi1 =y11,..., Y15 = y17)
P(Yi1 =vyi1,..., Y15 = Y. = =
( 11 = Y11 1J yIJ| n) P(Y,, _ n)
1L (nmig)¥ exp(—nri;) [yi;!
B n™exp(—n)/n!
= —_— w7
if y11 + - -+ + yr7 = n. Thus the conditional distribution is multinomial.
[5]

(¢) (i) The additive model has deviance 16.236 on 4 df, which is significant at the 5% sig. level as it is
greater than x§ os. , = 9.488. Thus significance evidence to reject independence between row and
column classifications. [4]

(ii) Vehicle condition cannot be removed from the model because of its significant interaction with
vehicle type. One can also say because of the lack of fit of the additive model — it cannot be
simplified further.

(iii) When vehicle age is added, the change in deviance is 9.6 on 1 df. This is significant at 5% since it
is greater than x3 5, ; = 3.841. Thus vehicle age should be included.

[The model with vehicle age provides adequate fit as 6.636 on 3 df is not significant at 5%.]



A3 (MATH4/68052 only)

(a) Definitions: [Bookwork]

S(t)=P(T >1t), t>0.

P(T <t+6T >t)

h(t) = lim : > 0.
Calculation of h(t) from S(t):
S'(t
) =~
Calculation of S(t) from h(t):
S(t) = exp (— /Oth(t)dt) |
[4]
(b) (i) f(t)=2te ¥, t>0.
F(t)= [12te¥dt=—e¥[f=1—e", t>0.
St)=1-F(t)=e*, t>0. 3]
(i) h(t) = f(t)/S(t) =2t,¢t> 0.
Straight line (slope=2) when plotted against ¢. [3]
(c) h(t; x) = ho(t)eP*, t >0
ho(t) is a hazard function (‘baseline’)
B is a constant. [4]
(d) The hazard h(t; x) is proportional to ho(t) and the hazard ratio
hts 2) _ se—a)
h(t; x*)
does not depend on ¢. 3]

(e) Partial likelihood is based on the order in which failures occur and relative risk. It is constructed as a
product of risk ¢ = %% divided by total risk just before each failure.
When d observations are tied, their contribution becomes the product of the d risks divided by the

sum of all possible products of d from the subset at risk.

3]



C1

(MATH4,/68052 only)

(a) Calculating Kaplan-Meier estimate of the survival function:
Att=8,r=12,d=1,50t) =1- % =0.917

Att=10,r=11,d=1, S(t) = 0.9167 x (1 — &) = 0.833
(

S

Att=11,7=10,d =1, S(t) = 0.8334 x (1 — 1) = 0.750

Att=14,r=7,d=1,8

Att=16,r=5d=1, St

(
(
Att=18,r=4,d=1,5(
Att=21,r=2d=1, St
(

The estimated survival function is

1, 0<t<8
0.917, 8<t<10
0.833, 10<t<11
0.750, 11 <t< 14
S(t)=1< 0643, 14<t<16
0.514, 16<t<18
0.386, 18 <t<21
0.193, 21 <t<?22
0, 22 <t

(b) The estimated mean survival time is

1x840917x2+4+0.833 x 14+0.750 x 3+ 0.643 x 24 0.514 x 2+ 0.386 x 34 0.193 x 1 = 16.582.

(c) Estimated median survival time is 18, because S(18) < 0.5 and S(t) > 0.5 when ¢ < 18.

(d) Estimated mean residual lifetime E[T — ¢|T > ¢] = % at t =18 is

(0.386 x 3+ 0.193 x 1)/0.386 = 3.5

Anyone who survives beyond 18 months is expected to live 3.5 months longer.

(e) Nelson-Aalen estimate of cumulative hazard H(t) at ¢ = 18:

1 11
E+—+E+7+5+7_0867

An approximate 95% confidence interval for H(18) = —log S(18) is

1(0386)j:196><\/ Lot vt b o0, 1795),
o8LH: : 12x11 " 11x10 " 10x9  7x6  5x4 ' 4x3

or 0.867 + 1.96 x /11/123 + 10/113 + 9/10° + 6/7° + 4/53 + 3/43 = (0.190, 1.544).

[4]



C2 (MATH4/68052 only)

(a) The log rank test statistic takes the value x> = 1.1 on 1 df which is not significant at 10% as P-

value= 0.303 > 0.1. Thus no significant difference between treatments A and B. [4]
(b) (i) Age is most significant with P-value < 0.01
Ecog.ps and resid.ds are the least significant with P-values 0.6 and 0.3 respectively. [3]

(ii) Age affects survival time significantly at 1%. P-value= 0.0078 < 0.01.

Survival time decreases with age significantly at 1%. P-value= 0.0039 < 0.01.

[4]
(iii) Hazard ratio = =991 = (.40 treatment 2 to treatment 1.
Less than 1, although not significantly so at 5%, P-value= 0.08 > 0.05. [3]
(¢) The fitted Weibull model is also a proportional hazards model.
No = 7106320 = 2.4131 » 1075, & = 1/0.52 = 1.9231,
Multiplying the estimated coefficients by -1.9231 gives estimates of Cox model coefficients.
age: —0.0650 x (—1.9231) = 0.1250
resid.ds: —0.5210 x (—1.9231) = 1.0019
rx: 0.5206 x (—1.9231) = —1.0012
ecog.ps: —0.0668 x (—1.9231) = 0.1285 [4]
Additionally it gives ho(t) in parametric form:
ilo(t) = 1.9231 x ~10-6320x1.9231 y 40.9231 4 () [2]
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SECTION A

Answer ALL five questions

Al.

(a) Give an example of measurement error in a survey. Provide the example in terms of a particular
survey question, what it measures, and what type of observations the measurement error could result in and
why (2 marks)

(b) In a study of ‘happiness’ it is found that the happiness Y;; of an individual ¢ = 1,...,n when interviewed
by an interviewer j = 1,...,m is given by Y;; = p + u; + e;, where p is a constant, u; e N(0,72), and
independently thereof e; o N(0,0?%). What is the variance V(Y;;)? (2 marks)

(c) What is the correlation between the response of two individuals ¢ and j that have been interviewed by
the same interviewer? (4 marks)

[8 marks total]

SOLUTION:

(a) For example: how many standard units of alcohol do you drink per week; measures alcohol consump-
tion; under-reporting due to memory error or prestige bias
(b) V(Yy,) = Vi, + ) = 7% + o
(c) Cov(Yij,Yi;)

, in which
YijYi;

E(YiYe;) = Elp+u; +e)(p+uj + e
= Blu®] + 2E[uuy] + Elpey] + Eluf] + Eluje] + Elue;] + Eluje;] + Eleiey]
=+ E[uf] =+
and E(Y;;)E(Yy;) = p?, so that

Cov(Yy;,Yi;) 72
YiYoj — 70

A2,

(i) Write down one advantage and one disadvantage of cluster (or two-stage) sampling, compared with
simple random sampling (SRS) with the same sample size, n. (2 marks).

A cluster sample was taken in which there were 10 equal sized clusters of size 25, the between cluster sum
of squares of the variable of interest (SSB) is 30 and the within cluster sum of squares (SSW) is 270.

(ii) From this information, calculate the Intra-Cluster correlation, p. (3 marks).
(iii) From this information, calculate the effective sample size. (3 marks).

[8 marks total]

SOLUTION:

(i) Advantage: Pragmatic, cost effective. Disadvantage: Less precise estimates than equivalent size SRS
due to clustering of values of variable of interest within PSUs.
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(i)

S~ - m . SSW
= m—1 SSW +SSB

25 270
= 1—(=—*-—=0.0625
(24 *300 0 °)
Where m is the cluster (PSU) size.
(iii)
DEFF = 14p(m-—1)
= 1+ (0.0625 x 24)
= 25

Effective sample size =

Table 1: Hospital Patient Waiting Time Data.
No. waiting over 4
Hospital No. of patients hours for treatment

1 100 10
2 300 12
3 400 15
4 200 20
5 500 )
6 600 10
7 200 )
3 100 10
9 200 10
10 400 12
Total 3000 109

A3.

(i) Explain briefly what is meant by probability proportional to size sampling (2 marks).

A local health authority in the north west collected the data in Table 1 for its 10 hospitals. A sample of size
n=2 (with replacement) was drawn from the data in Table 1, using selection probabilities proportional to
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the number of patients in each hospital. This sample comprises hospitals 3 and 7. Using the data in Table
1:

1. Write down the selection probabilities for these two hospitals. Hence calculate the estimated total
number of patients waiting more than 4 hours in all 10 hospitals using the Hansen-Hurwitz estimator.
(3 marks).

2. Write down the sample inclusion probabilities for these two hospitals, and hence calculate the estimated
total number of patients waiting more than 4 hours in all 10 hospitals using the Horvitz-Thompson
estimator. (3 marks).

[8 marks total]

SOLUTION:

(i) Each sample unit has a probability of selection that is proportional to its size. Thus, for example, for
a population of 10 hospitals, we can select a sample of them using selection probabilities on the basis of the
number of patients in them, rather than giving them equal selection of 1/10 regardless of size.

(ii) ps = 300/300 = 0.1 and p7; = 200/3000 = 0.0667, hence:

1/15 5
== (o 4+ —— ) = 112.4813.
THH = (0.1 N 0.0667) Bl

(iii) In general in SSWR for sample of size n, the inclusion probability for unit i is:
T, = 1-— (1 7]7,)”

Hence, when n = 2:
m3=1-(1-0.1)*>=0.19

and
7 =1— (1 —0.0667)% = 0.1290

Using these values we can estimate 77 as:

e = (2 4 2 ) Z117.7070
THT =\ 019 T 01200/~ "

A4,
A variable Y has been measured for n independent subjects. Assume that observations ¢ = 1,...,7 have
been fully observed and that observations ¢ = r + 1,...,n are missing.

(a) Assume that, n =25, r =15, "y, =87 and Y., y? = 23.49 and that you impute using the mean.
What is the sample mean and sample variance of the imputed variable? (2 marks)

(b) Is the sample mean based on mean imputation biased and if so how big is the bias? (2 marks)

() Is the sample variance as an estimator of V(Y") (for n — r missing as above) biased and if so how big is
the bias? (4 marks)

[8 marks total]

SOLUTION:

(a) Un-imputed mean is goc = %5 >y yi =8.7/15 = 0.58 so the imputed mean yrpp = 2% Sy =
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8.7/25 + 10gc¢ /25 = 0.58. The sample variance is

r i VT, 2
i v+ (n=1)yiup) — (Zim vt nr)ruer)

.2 — n
Simp n—1
(14.5)
_ (26.854) — ~—=
24
210.25
_ (35.94) — =55¢
24
= 0.7685

(b)

r

E(Yinp) = %E@ Y)+ T B(Y V) = Y E(Y) (1 + 2o ’”) — B(Y)

- T n nr
=1 =1

(c)

Bt — & ((zi_] v+ = (i i) ) Ciaw +<7(zn—_>1§ ) )
B 1 . 2 n—r L =9
1 T —9
= T VO B - g B
L 21 _ T - 2
= = 1)r [V(Y)+ E(Y)?] =1 V(Y)/r+ E(Y)?]
vt

and consequently the bias is E(S%,,p — V(Y)) = V(Y)Z=2

n—1

AS5.

In a regression Y = a + Bz + €, making standard assumptions, the intercept was estimated to & = 9.60 and
the slope to B = 2.94. A third variable z is introduced. The three variables are plotted in Figure 1. .

(a) Estimates from a regression Y = a* + *x 4+ v + ze were estimated. The values were 2.98, 0.05, —1.47.
What parameter was estimated to what numerical value? (3 marks)

(b) The standard errors for B* and 4 were 0.019 and 0.010, respectively. Assume that z is the crime-rate
of an area (on ward level), y is average life satisfaction of an area, and z is income-level. Perform necessary
tests and interpret the results in terms of what ‘causes’ life satisfaction (3 marks)

(c) Using the definitions of variables in (c¢) above, how does X relate to Y causally and what additional
models would we need to fit to investigate this? (2 marks)

[8 marks total]

SOLUTION:

(a) 4 is clearly positive. Judging by the figure, it seems that y increases roughly 2 to 3 units for every
unit increase in z, so 2.98 is more likely than 0.05, leaving @ = 0.05. Given z there is a clear negative
association between z and y so f* = —1.47 (which can also be confirmed by noting that a unit increase in
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Figure 1: Scatter plot of three variables, z, y, and z

x, for given value of z, leads to a decrease of somewhere between 1 and 2 units in y)

(b) First equation: HO: 8 = 0, against H1: 8 # 0. The test statistic T' = B/S.e.B ~ t(28) when HO is true.
As the degrees of freedom are large we approximate the t-distribution with a standard normal distribution.
We reject HO if |T'| > 1.96 on the 95%-level. Here T' = 4.7, therefor we reject HO.

The causal model implied by the regression states that a unit increase in crime-rate in an area leads to an
increase of 2.94 units of life satisfaction (in expectation).

Introducing z, HO: + = 0, against H1: v # 0. The test statistic T' = 'Ay/s.éﬁ ~ 1(28) when HO is true. As
the degrees of freedom are large we approximate the t-distribution with a standard normal distribution. We
reject HO if [T'] > 1.96 on the 95%-level. Here T' = 285, therefor we reject HO. Test HO: 5* = 0, against

H1: 8* # 0. The test statistic T = 3*/s.e. B~ t(28) when HO is true. As the degrees of freedom are large
we approximate the t-distribution with a standard normal distribution. We reject HO if |T'| > 1.96 on the
95%-level. Here T' = —76, therefor we reject HO.

The causal model implied means that a unit increase of average wealth leads to a 2.98 increase in life
satisfaction (in expectation) given the crime level and that the crime-level has a negative effect.

(c) It could be that wealth generates crime or the other way around. We can fit regressions to ascertain the
strength of association but direction has to be decided based on logic and theory.

SECTION B

Answer TWO of the three questions

B1.

For a variable Y and treatment T € {0,1} the average treatment effect (ATE) is defined as E[Y (1) — Y (0)]
where Y (1) is defined as the outcome under treatment and Y'(0) is defined as the outcome under control.
(a) Is the equality E[Y (1) — Y (0)] = E[Y(1)] — E[Y (0)] correct?(2 Marks)

(b) Define missing data indicators M; and My for Y (1) and Y (0) respectively, given T'(2 Marks)

(c) What property holds for the sum of M; and My (1 Mark)
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(d) For a sample of individuals i = 1,...,n, let Y; = Z;T >ir—1 Yi and Y, = ﬁ > i—o Yi be
the sample averages of outcomes in the treatment and control groups respectively. Assuming independent
observations on Y, prove that E[Y(1)|T = 1] — E[Y(0)|T = 0] is an unbiased estimator of ATE if data are
missing completely at random (MCAR) (5 Marks)

(e) Assume independent observations on Y for a collection U = {1,..., N} of individuals. Prove that se-
lecting units S C U to receive treatment using simple random sampling (without replacement) implies that
observations are MCAR (5 Marks)

(f) Assume that the expected value of Y is 2 units higher for women than for men, everything else equal.
Assume independent observations on Y for a collection U = {1, ..., N} of individuals where half of the units
are men and the rest women. Further assume that select units S C U to receive treatment using a stratified
random sampling. You select n men and n + k& women from each strata using simple random sampling
(without replacement). Is the ATE estimator going to over- or underestimate the ATE? (5 Marks)

[20 marks total]
solution:

(a) YES. By linearity of expectations.
(b) Let My =1 if Y(0) is unobserved and let M; = 1 if Y(1) is unobserved and we can symbolically write
Y (0) = Yobs and Y (1) = Yiniss. Given that 7' = 1, only the outcome in the treatment state Y(1) is observed.
Y (0) is then the counterfactual and is unobserved, hence (My, M) = (1,0). Given that T = 0, only the
outcome in the control state Y (0) is observed . Y (1) is then the counterfactual and is unobserved, hence
(Mo, My) = (0,1). More compactly we can express this as My =T and My =1—T.
(c) As My =1— My we have My + My = 1.
(d) The estimator Y; is an unbiased estimator of E[Y(1)]T = 1] and Y, is an unbiased estimator of
E[Y(0)|T = 0]. By definition, MCAR implies that Pr(My = a, M1 = b|Yobs, Ymiss) = Pr(My = a, My =
b).The face-likelihood

fyMT=1) = ff [y (é)llr (_;él?()): y(1))
(y(l)) r(T )

Pr(T'=1) [ f(y(1))dy(1)

fly(1))

Thus E[Y (1)|T =1] = [y(1)f(y(1))dy = E[Y(1)] and equivalently for E[Y (0)|T = 0].

(e) Now the treatment indicator T; serves the same role as the inclusion indicators. The missing data
generating model is Pr(My =1,M; =0|Y) =Pr(T'=1) =n/N and Pr(My =0,M; =1)Y) =Pr(T'=1) =
1—n/N.

(f) Let the variable X be equal to 1 or zero according to whether a person in male or female. The expected
value of the Y; will be equal to E[Y (1)|T =1] = E[Y()|T =1, X = 1] T nt[Y(l)|T =1,X=0] ;It_kk (as
there is simple random sampling in each group) and the expected value of Y. will be equal to E[Y (0)|T =
0 = EY0)|T =0,X =1] 2’;1'& + E[Y(0)|T = 0,X = 0]5,%. The higher proportion of females receiving
treatment means that Y; — Y, will overestimate the ATE.

B2.
(a) A Mathematics school in a University has the following four research groups (RGs) with non-overlapping
membership, and knows how many staff are in each group, and how many papers were published in 2014 for
each research group. These data are shown in Table 2.

For samples of size n = 2 groups without replacement from this population of N = 4 groups, the inclusion
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Table 2: Research Groups (RGs) and Papers Published in 2014, School of Mathematics, University of

Somewhere.
Research No. of No. of Total Proportion Total
Group Male Staff Female Staff Staff of total staff Papers
A: Algebra 12 8 20 0.2500 12
B: Geometry 8 12 20 0.2500 10
C: Applied Maths 15 10 25 0.3125 18
D: Logic 5 10 15 0.1875 15
Total: 40 40 80 1.0000 55

and joint inclusion probabilities based on the total number of staff in each research group are given below
in Table .

Table 3: Inclusion probabilities, 7;, 7, and joint inclusion probabilities m;;, for samples of size n = 2 groups
that could be selected from the research groups (RGs) A-D in Table 2

(i)

(i)

(iii)

RG k
- 0.1667 0.2178 0.1202 | 0.5047
0.1667 - 0.2178 0.1202 | 0.5047

RG ¢ 0.2178 0.2178 - 0.1573 | 0.5929
0.1202 0.1202 0.1573 0.3977

mr 0.5047 0.5047 0.5929 0.3977 | 2.0000

Oaw»=

For a sample size of n = 2, write down an expression for the joint inclusion probabilities. Do this
under the assumption that in a two-step selection process, the selection probability for the first unit is
proportional to total number of staff and that the conditional selection probability of the second unit
is proportional to the number of staff. (5 marks).

Use the Horvitz Thompson (H-T) Estimator to estimate the total number of papers published for a
sample of n=2 research groups, comprising Applied Maths and Logic. (3 marks).

Estimate the variance of the H-T estimated total using the Sen-Yates-Grundy (SYG) estimator (4
marks).

Write down a nominal 95% confidence interval for the H-T estimated total based on the SYG estimator
and a normal approximation (1 marks).

Using Chebyshev’s inequality, how many standard deviation units ¢ would you need in order for the
confidence interval to have at least 95% coverage? (3 marks).

(b) The Mathematics School also wants to survey the research interests and attitudes of individual staff
members, with a series of face-to-face interviews. However, it does not have the resources to survey all staff.
Instead, a sample of 40 staff members is to be chosen to be interviewed by 4 researchers. The school is keen

to ensure that a representative sample of staff is chosen, and that the workload of each of the 4 researchers

is manageable.

(vii)

Explain briefly how stratified and multi-stage sampling might be used as part of the survey design for
(b) (4 marks).
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[20 marks total]

SOLUTION:
(a) (i) Define probabilities of selecting two different research groups i and k as p; and py, where ¢ # k.
P(i chosen in first draw) = p;
P(k chosen in second draw|i chosen in first draw) =
P( group i chosen first, group k chosen second.)
= P(i chosen in first draw) x P(k chosen in second draw|i chosen in first draw)

Pk
(1—ps)

=Pi X {15

Conversely:

P( group k chosen first, group ¢ chosen second.)

= P(k chosen in first draw) x P(i chosen in second draw|k chosen in first draw)

— Pi

= PR X T

Hence, a general expression for the probability that research groups i and k are both in a sample of size
n=2 iS'

=p; X ( ) + pr X 7(1 )

(ii) Define number of papers published in research group i as t;.

7A'HT=§*

€S
_ 18 1
0 0.5929  0.3977
= 68.071

(ii)
Vsya(fur) = 72 3 <7mrk 7%) (Z—;’ZY

i€S kES ki
= 27.0040

N.B: Since 7, = 7, and we could select (i, k) or (k, i), the half in the expression above cancels out.

(iv)

The approximate s.e. of the total from \/Vsyg(%HT) = is: 5.1965 and the 95% critical points are —1.96 and
1.96. Hence the nominal 95% CI for the total is estimated as:

68.071 £ 1.96 x 5.1965

= (57.9959,78.25614).

(v)
Chebyshev’s inequality states that Pr(|X — E(X)| >
V(X)

(C\/ V(fHT)2

X) , here a = ¢\/V (7T, where we approximate

a) <
V(7ur by V(%HT = 27. Setting = % < 0.05 nd solvmg for ¢ we get ¢ > 4.47.

(b) (vi)

Stratify by gender, number of years working at the school, age.

Cluster by research group, or discipline areas within the maths school, choose 4 clusters at random of size
n=10. Send one researcher each to talk to the individuals in each research group, thus evening out the
workload and sending each research to only one place.
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B3.
Assume that a variable Y; is the the income of an individual in the north of England and that Y; ‘<" N(y, 02).
If we were to take a sample, we know that the missing data generating mechanism is
a+By
v oy €XDP
Pr(M; =1Y: =y) = 1~ —, po—T (1)

(a) If 8 > 0 will an available case analysis that estimates u based on a sample overestimate or underestimate
u? (2 marks)

(b) Are data missing completely at random (MCAR) and, if not, under what conditions for the missing data
generating mechanism are they? (4 marks)

(c) For u=0,0%=1,3=1,and a = —1.96, find an upper bond of the proportion of missing. Express this
in terms of the marginal probability Pr(M = 1), which is Pr(M = 1|Y = y) marginalised with respect to y
and use monotonicity of (1) (5 marks)

(d) Given an example of how you can make the bound in (c) sharper by using the fact that the function
1/(1 4 e/®) has an inflection point at f(y) = 0. You may need the result that if Z ~ N(0,1), then the
expected value for Z truncated to the interval (a,b) is

efa2/2 B 6752/2

(9 marks)
[20 marks total]

SOLUTION:

(a) available, and complete case for that matter, analysis uses observations Y; for which M; = 0. If 8 > 0
the probability of missing is increasing in y, meaning that any estimate of p only based on observed data
will underestimate p.

(b) If MCAR f(M;|Yobs, Ymiss) = f(M;). Here, if M; = 1, f(M;|Yobs, Yiniss) = Pr(M; = 1|Y; = Y miss)- If
B =0 then Pr(M; =1]Y; = y) = Pr(M; = 1) = exp® /(1 + exp®).
(c)

Pr(M=1) = / Pr(M = 1Y = y)(2r) /2 ¥ 24y

J —oco

0 a+y i " 00 a+y )
— e 7 -1/2 —y/2 g, e —1/2_—y?/2 3,
B / 1+ exty (27r) ‘ dy + /0 1+ exty <27T) € dy

J —00

where

-0 e s 2o e -0 1/9 2 /9
/ : (2m)~YV2e v 24y < . / (2m) Y 2e7v 2y
o e()é 6(1/ o

6—1.96 1

1+ e—196 92

0.123467
= —5 = 0.0617
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and, the second term in the sum, we observe that

0o ea-i,-y | 5 1.96 ea+y 5 00 ea+y 5
—1/2,—y"/2 - - —1/2,—y"/2 - —1/2,—y"/2
/0 1+ eaty (2m) ‘ W = /0 1+ exty (2m) ‘ W+ /1.96 1+ eaty (2m) ‘ dy

e—1.96+1.96 1.96 12 2/ 00 12 2/
< —/ (2m)"/=e ™Y dy+/ (2m) /e Y I 2dy
1+ e L96+L96 | Log

~ %(@(1.96) —0.5)+ (1 — B(1.96))
— 3/4— 3(1.96)/2 = 0.2625

giving us an upper bound of 0.0617 + 0.2625 = 0.32. to here is sufficient for full marks
We can also, for example, construct intervals (y,_1,y,| and evaluate

o0 ety
/ (2m) " 2e~ y/gdy < Z

ety

T (2m) /27" 2y 4+ 0.0194B(—1.96) + (1 — D(1.96))

1 4 paty
14 exty S

<> (0.053y, +0.12)(D(yr) — (yr-1)) + D (0.19y, +0.12)(P(y,) — D(yr—1))
riy,<0 7y >0

-+ 0.02548285

According to this painstaking excercise we have an upper bound on the proportion of missing that is

Table 4: Simple interpolations

r yr  0.053y, +0.12  ®(y,.) — P(yr—1) prod
1 -1 0.067 0.1336574  0.008955043
2 0 0.12 0.3413447 0.04096137
yr 019y, +0.12 P(y,.) — P(yr—1) prod

3 1 0.31 0.3413447 0.1058169
4 1.96 0.4924 0.1336574 0.0658128
0.2215461

0.2215461 + 0.02548285 = 0.247
(d) As Hiaiy is convex on y € (—00,0), this bound can be made sharper by linear interpolation, noting

that g(y )<%( —b)+g(b ),gy)zm Setting b = —1.96 and a = 0, we get

_ 104 _q
e 1.96 e 3.92

e 196 — 1te¢ 392 —3.02
9ly) < FE T (y+1.96) +

14 ¢392
0.123467 — 0.019455
= (y + 1.96) + 0.019455

1.96
0.104

= 2 £ 1.96) + 0.019455
Tog W+ 1.96) +

= 0.053(y + 1.96) 4 0.019455
= 0.053y +0.1233
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Similarly, on y € (0,1.96)

—1.96
§ L Heefl"% o—1.96
- 1.96 1+ e 196
0.5 —0.123467
= — 0.123467
1o6 /7

0.1921087y + 0.123467

/OO Y o)Lz 2 /0 (0.053y + 0 12)6_y2/2d /1'96(0 19y + 0 12)€_y2/2d
¢ (om) 12 < 053y + 0. + 19y +0.12) 5
Lo L ety Y ~1.96 / V2T / 0 Y V2m Y
+0.01948(—1.96) + (1 — ®(1.96))
0 ye—y2/2 1.96 ye—y2/2
< 2% 0475 x 012+ 0.053/ dy + 0.19 dy + 0.0255
~1.96 V2T 0 V2T
0.114 + 0.053 /0 ve Vo oe [ s 0085
< 0. + 0. y+0. / : y+ 0.
~1.96 V2T 0 V2T

Now, we recognise the integrands as the expected values of truncated standard normal variates multiplied

by their normalising constants.

0

/

ye—yz/2

Ver

dy
1.96

and
1.96 , —y?/2
ye

Ver

J

and putting it together

o0

/

ety

oo 1+ eaty

E(Z| —1.96 < Z < 0) (®(0) — ®(—1.96))

6—1.962/2 e—02/2
ors ors
= ®(0) — ¢(—1.96
2(0) — &(—1.96) (®(0) — & )
-1.96°/2 _ 4
= & T 034
V2

E(Z|0 < Z < 1.96) (®(1.96) — ®(0))

6—1.962/2 6702/2

V2n Ven

$(1.96) — @(0)
1 671.962/2

=0.34
V2T

(®(1.96) — B(0))

(2m) 127" 2y < 0.114 — 0.053 x .34 + 0.19 x .34 + 0.0255 = 0.193

END OF EXAMINATION PAPER
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MATH39012 Mathematical Programming
Solutions 2015

Solution Q1
(a) Formulation:

Maximize 60W + 100C + 80S

subject to 6W + 8C + 10S < 5000
100W 4 150C 4+ 1205 < 60000
W+C+S <500

W,C,5>0

W c S w s S
s1| 6 8 10 | 5000 s1| 2 -5 3| 1800
sy [ 100 |150| 120 | 60,000 C| 2 15 £ 400
s3 | 1 1 1 500 ss | 3 —T3 up | 100
-60 -100 -80 | O 2 2 0 | 40,000

Thus optimal to plant 400 acres corn only.

(b) Optimal dual solution y” = ¢5B~" where

50
1

150

and cf = (0,100,0) so y* = (0,2,0).
Now z = yTbso 6z = yTéb so for & b= (24,0,0)" 6z = 0. No value in
additional man-hours.

s1 = 1800 at optimum so man-hours are not a binding constraint.



(¢) Add constraint W > 100 or W —s4 = 100. Add s4 —W = —100 to tableau

W S92 S Sa S92 S

2 __8 540 2 _ .8 540 5200
81 3 150 150 1800 1| 3 150 150 3

2 112 2 1 12 | 1000
c 3 150 15 400 C| 3 150 15 3

1 __1 30 1 __1 30 200
83 3 150 150 100 83| 3 150 150 3
S4 -1 0 0 —100 w | -1 0 0 100

20 2 20 2 118,000

22 [40,000 2z [ 1800

New optimal solution is (W, C,S) = (100, %, 0). Max profit $&3000



Solution Q2

(a) Write constraints as Az —s=1»>

RIS

then apply dual transformation to standard form

D: maximize gy7b
subject to Ay’ < T
—yT < 0T, y unrestricted

Thus dual is
D: maximize yTb
subject to Ay’ < ¢
yT Z OT
(b) Phase I problem:

Minimize R+ Ro

subject to R;+x+6y+3z—s1 =2
Ro+2x—by+ z—s93=3
xayazaRlaR%SlySQ ZO

x Y Z 81 89 z y R S1 82
R |1 6 10 z| 3 2 -3 0|2
Ry|2 -5 1 0 -1|3 Ry | |3| -7 i 1|1

- - 5 1 7

3 1 4 -1 -1 57 Loz

15 0 0
R2 Yy R1 S1 S9
5 17 _2 1] 1
5 5 5 5
21 1 3 7
x 5 5 5| 5
0 0 0] 0
_32 _8 _1]19
5 5 5 5




So tableau is immediately optimal for Phase II and z* = %, ¥ =

(b) Dual problem

Maximize 2wy + 3we
wy + 2wy < 2
6w, — dbwy < 15

3wy +we <5, wi,we >0

Let dual slacks be v1,v9,v3 > 0 then CS conditions = v; = v3 =0

wy + 2wy = 2
3wy +ws =5

* 8 * 1
Hence wi = £, w3 = 5.

Duality theorem check that all variables are feasible for primal, dual and

2wy + 3w3 = %9: minimum OF for primal.



Solution Q3

(a) The incumbent is the best solution found so far along any branch.

Fathoming a branch is concluding about the solution for the subproblem

represented by that branch. For a max problem the LP relaxation pro-

duces an upper bound for the true integer solution for that subproblem.

Pseudocosts are used to evaluate alternative branching possibilities: choice

of a branching variable and whether to set aside the "up" or "down"

branch. They are the change in the value of the OF due to one iteration

of the dual simplex procedure.

(b) Solution to LP relaxation

1| 21 a9 IT | 55 2

s1 | -1 2 4 S1 1 1|5

59 11 x| 1 11

s3] 4 112 s3 | -4 8

5 1| 0 5 6|5

111 So 83 IV | s4 s3 V| 54 s

51 g L X si| 9 [=2]] -2 ss| 9 -2 1
1 L | 1 0| 2 e | 1 0| 2
| -3 §| ¢ zy | 4 1 | 4 1| 3
sg ||—3] -+ -2 sy | =5 1 ss | =5 1] 2
I s B 1 1] 14 1 1]13

RHS> 0 in final tableau. End dual simplex iterations with z¥ = 14%.

Table of pseudocosts

Z1

€2

N

[SH{ISCRSTISC) EA

1
0

—

Up branch on x; (z;1 > 3) is infeasible, so consider down branch (z; < 2)

Add in z; + s4 = 2 and eliminate z; from z; + %52 + %53

Add Sq4 — %82 —

1

(:ET’ m;) = (27 3)

£83 = f% = optimal solution

2* =13

13

5




Solution tree:

\)infeasfble

z=14 z=13

integer solution (2,3)
found



Solution Q4.

(a) Expected payoff (B/W)

m n

E (’I", C) = ’I"‘T Ac= ZZaijricj

i=1 j=1

Fundamental Theorem of Matrix Games (B/W):

3 strategies 7/, ¢ s.t.

E(r',c)>wv for all column strategies ¢

E(r,d)<w for all row strategies r
v is the value of the game.
(b) (i) Colin’s problem to determine ¢’ = z* optimal for

mgnr?Zallx {aiT:L'} , (aZT =row i of A)

i.e.
min v
such that
Az <ol
1Tz =
x>0

1 1
(ii) Let &’ = —x, then 17z = —, so problem transforms to
v v

!
max 1T¢ = =
v

such that

Ax' <1



Colin’s LP:

Maximize

1+ T2 + 23

subject to 4x; +3xz9+ 123 <1
ZTo + 2.’E3 S 1

x1,T2,23 >0

Max | ©1 x2 x3 Max | s1 To T3
1 3 1|1 o | 33 10l
s2] 0 1 2|1 s2 0 1 1
1 1 3 | 1
-1 10 F e S
Max | s1  x2 T3
X %
T3 %
1 1 _ 3|5
1 3 8 |8
SO % = % hence Colin’s optimal strategy is
/1, _8(1( 4
' =3z=35(507%)
_ (1 4
=(5:0,5)
(iii) Rose’s problem (dual to Colin’s)
Min Y1 + Yo
s.t. 4y > 1
3y1 +y2 > 1
y1+2y2 > 1
Y1,92 > 0
By CS conditions v; = v3 = 0 so y; = i = %, Yo = %. Hence Rose’s

optimal strategy

(iv) Game favours Rose as v = 2 > 0.

Rose should pay % to make game fair.
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.

= N(=0.12) ~ 0.34[N (~0.12) — N(-0. 13)]
= 0.4522 — 0.34 x (0.4522 — 0.4483)
= 0,450

00

ot

.02

.03

e

04

.05

.06

08

09

~0.0
—0.1
«0,2

. =03

~0.4
~0,5

0.7
-0.8

-1.0
~11
~1.2
—-1.3
~14

1.5

=16
=17

-=1.8
"-1.9

=~2.0
-2,1
—2.2
—2.3
2.4

2.5

w2 6

—2.7
—2.8
~2.9

~3,0

~3.1

3.2
-3.3
~3.4

~3,5
~3.6
=37
~3.8
-39
—4.0

0.6

0.5000

0.4602

04207

0.3821
03446
03085
0.2743
8.2420
0.2119
01841

0.1587

0.1357
0.1151
0.0968
(.0808

0.0663
0.0548

&.0d46
0.0359
0.0287

0.0228
0.0179
0.0139
0.0107
0.0082

0.0082
0.0047
0.0035
0.0026
0.001%
0.0014
0.0010
0.0007
0.0005
0.0003

0.0002

0.0002
0.0001

0.0001

0.0000
0.0060

- 0.4960

04562
0.4168
0.3783

0.3409

0.3050
0.2709
0.238%
0.20%0
0.1814

0.1562
0.1333
0.1131
0.0951

0.0793
0.0655

0.0537
0.0436

0.0351.

0.0281

0.0222
0.0174
0.0136
70,0104
0.0080

10,0060

0.0045
0.0034
0.0023
0.0018

10,0013

0.0009
0.0007
0.0005

0.0003
16,0002

0.0002
0.0001
0,0001
0,0000

0.0000-

0.4520
04522
04129

03745

03372
0.3015
0.2676
0:2358
0.2061
0.1788

0.1539
0.1314
0.1112

-0,0934

0.0778

0.0643
0.0526
0.0427
0,0344
0.0274

0.0217

0.0170°

00132
00102
0.0078

0.0059
0.0044
0.0033
0.0024
0.0018

0.0013
0.0009
0.0006
0.0005
0.0003

0.0002
0.0001
0.0001
0.0001

0.0000
00000

0.4880
0.4483
0,4090

0.3707

03336
0.2081
0.2643

0.2327

0.2033
0.1762
0.1515
0.1292
0,1093
0.0918
0.0764

0.0630
0.0516
0.0418
0.0336
0.0268

0.0212
0.0166
0.0129
0.0099
0.0075

0.0057
0.0043

0.0032
0.0023

0.0017 °
0,0012.

0.0005
0.0006
0.0004
0.0003

0.0002
0.0001
0.0001

0.0001
-0,0000
00000

0.4840
0.4443
0.4052

0.3665
© 03300

0.2046
0.2611
0.2296
0:2005
0.1736

0.1492
0.1271
0.1075
0.0501

0.0749
0.0618

0.0505
0.0405
0.032%
0.0262

0.0207
0.0162
0.0123
0.00%6
0.0073

0.0055
0.0041
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0.0016

0.0012
0.0008
0.0006
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0.0003
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0.0001
0.0001
00,0000

£:0000

0.4801
0.4404

- 0.4013

0.3632

03264

0.2912
0.2578
0,2266
0.1977
0.1711

0.1460
0.1251
0.1056

. 0.0885

0.0735

0.0606

0.0495
0.0401
0.0322
0.0256

0.0202
0.0158
00122
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0.0071

0.0054

- 0.,0040
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0.0022

0.0016

0.0011
0.0008
0.0006
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0.0003

0.0002
0.0001
0.0001
0.0001
0.0000
0.0000

0.4761
0.4364
10,3974
0.3594

03228
" 0.2877

0.2544
0,2236
0.1949
0.1683

0.1446

0.1230

0.1038
0.0869
0.0721

0.0594.

0.0485
0.0352
0.0314
0.0250
0.0197
0.0154
0.0119
0.0051
0.0065

0.0052
0.0039
0.0029
0.0021
0.0015

0.0011
0.0008
0.0006
0.0004
0.0003

0.0002
0.0001.
0.0001
0.0001
0.0000
0,0000

0.4721

04325
03936
0.3557.

03192

0:2843
02514

0.2206

0.1922
0.1680

0.1423
0.1210

0.1020

0.0853
0.0708

0.0382

0.0475

" 0.0384

0.0307
0.0244

0.0192
0.0150
0.0116
0.0089
0.0068

0.0051
0.0038
0.0028
0.0021
0.0015

0.0011
0.0008
0.0005
0.0004
0.0003

0.0002
0.0001
0.0001

0:0001-
0.000C

0.0000

0:4681
04286
0.3897

03520 -

04156

02810

0.2483
0.2177
0:1894
0.1635

0.1401
0.1190 -
0.1003 .

0.0833
0.0694

- 0.0571

0.0463
0.0375
0.030%
0.0239

0.0168

- 0.0146
0.0113

0.0087
0.0065

0.0049

0.0037

0.0027

0.0020

0.0014

0.0010
0.0007
0.0005
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0.0003

0.0002
0.0001

0.000]

. 0.0001
- 0.0000

0.0000

0.4641

(4247 -
0:3859
[1.3483 -

03121

02776 -
02458 -

02148
01857
0.1611

01379
G.1170:.
(.0985-

0.0823

0.068%
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Qodss

00367
0,0294

0.0233

‘00183 -
00143

0.0110-
0.0084
0,0064

0.0043
{0.0036
0.00z46
0.0019
0.0014
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-0.0007.
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0.0003

0;1:1";:10-2- o

0002

0.0001

0,000
0.000%

0.0000 -
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Solutions to exam MATH39542 Risk Theory 2015

General remarks The syllabus of MATH39542 Risk Theory consists of (i) ruin theory,
(ii) premium principles and risk measures, (iii) Bayesian statistics and (iv) credibility theory.
The four questions cover these topics in exactly this order.

Most of the questions are similar (though the degree of similarity can vary) to questions
on the example sheets, though none are copy-pasted from the example sheets; other models
(not just other parameters) are used instead and/or the question is phrased differently. The
exceptions are:

e Questions 1(a) and (b) are close to material seen in the lecture notes.
e Question 1(c) can be considered as a ‘new’ question.
e Questions 2(a) and (b) are bookwork.

e Question 3(c) can be considered as a ‘new’ question.



Answer to 1

(a) Let X denote the size of the first claim. The cdf of X is given by Fy, (z) = 1 —e™ .
Therefore using a formula in the notes for the Laplace exponent £(0), we get
0

£(0) = ch — 9/\/ e (1 — Fx,(2))dz = cf — 0/\/ e Oty = ch — \ .
0 0 0+ «

(b) Noting that E[X;] = 1/«, the Laplace transform of the ruin probability is given by

— _5(9)_9(0_)@[){1])
/Oe o(u)du = 0
l/a—=1/(0+a) 0+a

:)\06—)\0/(9+a) 0+«
) 0/
O(c(0+ a) — N)
) 1
Tac O+a—\e
A Ooefeuef(af)\/c)ud,l%
ac J,

where the first equality follows by a formula from the notes. By uniqueness of the
Laplace transform it follows that ¢(u) = 2e~(@=»Iu for ¢ > 0.

(¢) (i) Denote by ¢ (u), respectively ¢o(u), the ruin probability of the first respectively
second lob at initial capital u. Since both lobs have exponentially distributed
claims, it follows by the stated formula in part (b) that

2
ac

2 2 1 1 1 1
1—Sup 1 _ —5u1 0.7—zug 2 —5u2
e 4 =:se 2 ¢2(U2) (§] 5 = 76 27,

1x4 2 ’ T 07%5

o1 (U1) =

Let T}, respectively T5, denote the ruin time of lob 1 respectively lob 2. The
probability that at least one lob gets ruined is given by

P(T7 < oo or Ty < oo) =P(Th < 00) +P(T5 < 00) —P(T} < 00 and T, < 00)
=P(T1 < 0) +P(T; < 00) — P(T7 < 00)P(T5 < 0)
=p1(ur) + P2(uz) — @1 (ur)da(uz)

1 1 1 1
:%e_ﬁul + %e_iw — %e_iul * %e U2

(ii) We want to minimise the function
flur,ug) :=P(T} < oo or Ty < 00)

subject to the constraint u; + us = 3. Substituting the constraint u; = 3 — us
into f leads us to look at the function g(ug) := f(3 — ug,uz) and we need to

2



minimise this function over the interval [0, 3]. We have

d 31
1.—5,5u2 2 —5u2 11—
—— [ Lle72e2 2e7ouz _ 1l,—3
g (uz) ity ;€ 2e27 4 7e 14©
3 1 1
:ie_2e2u2 — %e_2u2

We have ¢'(u2) = 0 if
3
uy = log(%e2) = 2 + log 3 = 0.9404.

3 1 1
Since ¢"(ug) = %e_ieiuz + 1—146_5“2 > 0 for all u € [0, 3], the point uy = 0.9404
is the minimum of g(-) over the interval [0,3]. So the optimal allocation is
uy = 0.9404 and w3 = 3 — 0.9404 = 2.0596.

(d) From the lecture notes we know that the ruin probability at 0 initial capital is given
by

where \ is the claim intensity, Y7 the first claim amount and ¢ the premium rate of
the first lob under the reinsurance scheme. We have A = 2, ¢ =4 — 25 = 1.5 and
Y1 = min{ X7, 0.8}, where X; is exponentially distributed with parameter 1. We have
with M = 0.8,

M 00
E[Yi] :/ xe‘xdx—i-/ Me *dx
0 M

=1—Me™M oM Me™
=1—eM

=1—¢"%% = 0.5506.

Hence the ruin probability at 0 initial capital is w = 0.734.

Answer to 2
Let X be arisk, i.e. a positive random variable and let (X)) be the corresponding premium.

(a) The exponential premium principle means that the premium is given by
W(X):ElogE[e ]

where g > 0.

(b) A premium principle satisfies the no rip-off property if for any risk X which is bounded
from above by a constant C, i.e. X < C, we have that the premium is also bounded
by C, ie. w(X) <C.



(c) With the Esscher premium principle the premium for a risk X is given by
E [XePX]
E [efX] ~
where 5 > 0. Let X and Y be independent, positive random variables. Note that for
independent X and Y and functions f and g,

E[f(X)g(Y)] = E[f(X)][E[g(Y)].
For the additivity property, we need to show m(X +Y) = n(X) + m(Y). By using
linearity of expectation and the independence of X and Y, we have
E [(X +Y)elX+1]
E [eﬁ(X-i-Y)]
E [XeXePY] + E [YePXefY]
E [efXeBY]
E [XeX]E [¢”Y] + E [¢*¥ ] E [Ye?Y]
B E [P E[e™]
E [XeﬂX] N E [YeBY}
E [eAX] E [efY]
=m(X) +7(Y).
We conclude that the Esscher premium principle is additive.
(d) The cdf of X is given by

m(X) =

T(X+Y)=

(0 x < 200,
0.45 200 < 2 < 300,
Fx(z) =P(X <z)=<0.80 300 <z < 400,
0.92 400 < 2 < 500,
1 z>500.

\

Hence the Value-at-Risk with confidence level 0.90 is given by

VaR(X;p) = inf{z > 0: Fx(x) > 0.90} = 400.
For the TVaR, note that VaR(X;t) = 400 for 0.90 < ¢t < 0.92 and VaR(X;t) = 500
for 0.092 < t < 1. Therefore the Tail-Value-at-Risk with confidence level 0.90 is given
by

1

1
TVaR(X;p) =1 090 . VaR(X; t)dt

0.92 1
=10 * (/ 400dt +/ 500dt)
0.90 0.92

=480.




Answer to 3

(a) By Bayes’ Theorem we have

foix(0|z) = c(z) fxje(x]6) fo(0),
where f denotes the pdf/pmf of the respective random variable and ¢ is a constant
depending on x. Hence for any z € R
ca) o—(@+1)?/2 §f g = —1
foix(0)z) = cle) o—a?/2 if0=0
e~ @=DY2 if g = 1.

> fex(lx) =1

0e{-1,0,1}

it follows that

-1
c(x) _ (16—(96-%1)2/2_{_16—:02/2_{_ie—(ac—l)Q/Z) _

\ 2T 4 2

Plugging this back in and simplifying a bit we get

(142712 4 g2) 7! if6=—1
f@|X(9’$) =42 (6_9“”_1/2 + 2+ ex_l/Q)il ifd=0
(6_21’ + 2e7 T2 4 1)71 if 0 =1.

(b) We know from the notes that the Bayesian estimate under the squared error loss
function is equal to E[©|X = z| and hence

0p(z) = E[O|X = ]
_ _1.(1 426t t1/2 4 62@«)*14_0_2 (e—:r;—l/Z +94 ex—1/2)*1+1‘(€—2a: 4 et /2 4 1)
2 (6x+1/2 . eferl/Q) + e2r _ o2z

(1 + 2ez+1/2 + 621}) (6—2x + 2e—x+1/2 + 1) .

-1

(c) We know from the notes that the Bayesian estimate is the decision function that
minimises the posterior risk, i.e. the decision function d* that attains the minimum
in

m}n E[l(©,d(z))|X = z].



Note that equivalently we may fix z and minimise over d(x) € R. In this case we are
given that x = 0 which yields

E[1(©,d(0))|X = 0] = [-1=d(0)|- fex (=1[0) +[d(0)]- fe|x (0]0) +[1=d(0)[- fe|x (1]0)
= —1—d(0)]- (24 27 +1d(0)] - (1 + e 2)71 4 [1 = d(0)] - (2 4 2¢"/%)71.

Note that the continuous function

fR)=—1—z-2+2") 4 |z|- 1+ ) 4|1 — 2] - (2+ 227!

is linear on each of the intervals (—oo, —1), (—1,0), (0,1) and (1, 00), and it satisfies
f(f£00) = oo. Hence it attains its minimum in either z = £1 or z = 0. As

f(=D) = f1)= (14 V)T (24272 = 0.8 and f(0) =2(2+2¢*) 1~ 04
it follows that f attains its minimum in z = 0. Therefore d*(0) = 0 i.e. the Bayes

estimate is 0. (Which is of course not very surprising given the symmetry of the
problem).



Answer to 4

(a) With = 0.1 denoting the observed claim amount in Year 1, the posterior distribution
of © is
forx(0]z) o< fxje(x]0) fo(0)

2x

O(8I91{9>x},

where the symbol o stands for ‘proportional to’. In order to determine the constant
of proportionality, which we denote by ¢, we must have

1 1
1 :/ foix(8|xz)dd = 8cq:/ 0d0 = 8ca3(1 — 2?),
0 T

which implies ¢ = m and thus fex(flz) = 2%, 0 <z <0 < 1.
We also need to compute

oo 1 [
u(0) == E[X]0 = 0] = / zfxje(z|f)dr = 72 20°dx = 20.
0 0

By a theorem in the notes, the Bayesian credibility estimate (which is defined as the
Bayesian estimate of ;(©) under squared error loss) is equal to the expectation with
respect to the posterior distribution, of 1 (©). Hence

jin(e) = B =] = [ 0)ferxtolonas = 52— [ s = ST

Since we have z = 0.1, the Bayesian credibility estimate is given by fi5(0.1) = % =

0.448.
(b) We have pu(f) = 36 and
v(0) :==Var(X|0© = 0)
=E[X?|0 = 0] — p(0)*

6 3
2x 42
= . —‘92 dx—§9
= (31 =

This implies



From the lecture notes we know that the Biihlmann credibility estimate based on the
observed value of X = x is given by

(1 —w)p+ wex,
8
where the credibility factor w is given by w = ;. In our case w = 7(:':2?5 = ﬁ and
so Biithlmann’s credibility estimate is given by
fipy =wsz+ (1 —w)xp==2%01+2 %3 =22 = (428

(c) The size of the portfolio in year i is denoted by m;. We have m; = 250 and my = 300.
We let X; be the average claim amount of the group per policyholder in year . Note
that we observe

X, =135/250 = 2

From the lecture notes we know that the Biithlmann credibility estimate of X5 given
the observation of X is given by

fiev = (1 —w)p + wXy,

kmi1  __ 250k
v+kmi  v+250k

where the credibility factor w is given by w = with u, k,v as in part

(b). Therefore

fizy = (1 — 2(1)) *15 + @ % 1625165'
Hence the Biihlmann credibility estimate of the total claim amounts of the portfolio
in year 2 is

856 4 my = 1120 = 161.975.
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