STAPF COLLEGE

SOS' HANDBOOK 1967
INDEX
PART III - EGPT CAPABILITIES
Detail
Won Ranges and Cacabilitios Page
Armd Wpas
Arty Wpns (Guns and Hows) 300
Arty wpis (Nuclear and AD) 301
Radar (AD Arty) 302
Loc Eqpts 303
Inf wpns 304
Scales and Capabilities Ni Fighting Aids 305
Voh characteristics
AFVS
B Vehs . 308
C vehs 309
Spare 310
Sea Lift Capabilities 311
Spare 312
Ac Performance
Army Ac
RAF ST AC 316
RaF Tac TAc $\quad 317$
Raf Tac Tand Hels 318
Spare .. 319
Comms Eapt 320-321
Glossary of Sig Terms
Fd Radio and RR Eqpt
Freq Overlap 324-327
Telephones and Swbds 328
Fod Cables . 329
330
MAX RINGBS OF ARV WPNS IF METRES

Serial	AFY	*pn	H8	Anti-tk	WG	Notes
(8)	(b)	(द)	(त)	(0)	(1)	(g)
1.	Centurion 105-m	105-ma	7,200	1,800	-	With ranging WG
		. $30-1 n$ coaxial ug.	-	-	1,600	Normally limited to 800 when the tracer burns out.
		. $30-1 \mathrm{n}$ comd's MG	-	-	800	
2.	Chieftain	120-mm	7,500	$\begin{gathered} 3,000 \\ \text { (see note) } \end{gathered}$	-	Assume; optimum battlefield range for anti-tk 1,800 m . This is max range of ranging $M G$; above this range a hit will kill but accuracy deteriorates.
		7.62-man coaxial UG	-	- -	1,600) Normally limited to 1,000 when the tracer
		7.62-ma cond's mg	-	-	1,600	
		. 50 ranging MG	-	-	1,800	Strictly for ranging the main armament only. amo sup and barrel wear prohibit other uses.
3.	Saladin	76-mm	6,400	1,600	-	
		. 30 - in cogxial. MG	-	-	800	
4.	Saracen	. $30-\mathrm{in}$ MG	-	-	800	
5.	Berret Mk I	. $30-$ in MG	-	-	460	Reduced range of . 30 MG is due to lack of proper mounting.
8.	Ferret uk II	. $30-\mathrm{in}$ WG	-	-	800	```Proportion fitted with Vigilant (anti-tk cw with range of 1,375 m).```
7.	Hornet	Malkara	-	$\begin{array}{r} 450 \text { (min) } \\ 4,000 \text { (max) } \end{array}$	-	
8.	EV_432	Swingfire	-	$\begin{aligned} & \text { Classified } \\ & \text { see note } \end{aligned}$	-	For Staff College purposes assume same as Maikara, is 450 (min) and 4,000 (max).

Sarial	Bqpt	$\begin{gathered} 7 \operatorname{mox} \\ \operatorname{mang} \theta \\ \text { (metres) } \end{gathered}$	Ampo			Retes OT Fhre（rpm）					Remerks
			Type		1st Ling	Intens－	Rapld	Norma 1	Slow	Very Slux	
（E）	（b）	（c）	（d）	（e）	（1）	（g）	76）	（1）	（i）	（1）	IIT
1.	$\begin{aligned} & 105-\mathrm{mm} \\ & \text { pack } \end{aligned}$	10，000	－HE Smoke HRSH Tgt Indicating Tliuminating Canister	33	$\begin{array}{r} 150 \\ 16 \\ 12 \\ 16 \\ 16 \\ 4 \end{array}$	5	4	3	2	1	Gun can be broken down into 12 loads－heaviest $2 \frac{1}{2}$ c形。 Ammo sceles not applicable to cdo 1t regt．
2.	$\frac{105-\mathrm{mm}}{(\text { Abbot })} \mathrm{SP}$	17，500	＊HE Smoke ERSH Tgt Indi cating Illuminating	35	$\begin{array}{r} 168 \\ 20 \\ 18 \\ 12 \\ 12 \end{array}$	6	5	3	2	1	Ammo carriad on gun： Swimming preparations take 1,3 mins．Speed in water 2.4 ktis ． $\begin{aligned} & \mathrm{HE} \\ & \mathrm{HBSH} \end{aligned}$
3.	5．5－in	16，500	＊HE	80	134	2	13	1	3	$\frac{1}{3}$	
4.	$\underset{(M 109)}{155-\mathrm{mm}} \mathrm{SP}$	14，600	HE	95	134	3	2	2	$\frac{2}{3}$	$\frac{1}{4}$	Rates of fire provisional．
5.	8－in how	16，500	＊ H B	200	56	1震	1	$\frac{1}{2}$	5	1／6	
6.	$\frac{175-\min }{(4107)} 5$	32，800	HR	147	142	1	－	$\frac{1}{2}$	－	－	Rate of fire provisional．

for planning purposes it is normal to take 90% of the max ramge．
＊Incl airourst．
FRONTAGES AND SAFB DISTANCES

Eqpt	Hax Eff Frontage of One HE Shell	Reas onab 18 Sape Distan	co for He from Nesiest Trs
（a）	－（b）	－	－
	40 50 55 65 60	250 400 400 700 600	500 500 500 800 700

Above figures c an be halved for tps in ARCs．
NUCLEAR ARTY

Seriel	Nature	Bqpt	Herhoad Yield	Pypes of Burst	Hap		Rate of Fire by Bty
(a)	(b)	(c)	(d)	(8)	(1)	(g)	(h)
1.	Gun	8-in how	1 and 2 KT	High and low air'bursts	2	20	12 per hr (pax)
2.	PFR	Honest John	$5,20 \text { and } 50 \mathrm{KT}$	High and low air surface burste	7	40	8 per day

These figures are for trg only and arg based on the data for a Medium Range Cannon end a Large Free Rocket given in Artillery
Training Volume VIII Pamphlet 2 (Nuclear Artillery, Tables of Effects).

Serial	Nature	Eqpt	Hax EPr	A19mo			Remarks
(a)	(b)	(c)	(d)	$\frac{\text { weight }}{(6)}$	(1)		(h)
1.	LLAD	$\begin{aligned} & 40-\mathrm{mm} \text { L70 (towed) with } \\ & \text { FCE AA NO } 7 \end{aligned}$	7,000 ft	2	HB	603	Can fire at the rate of 240 rpm . Blindfire capability.
2.	LILD	ET 316	Adequate overlap with Thunderbird 2	88	HE	13	Performance details classified. In practice tarrain will always limit performance. For planning purposes, assume each weapon covers $120^{\circ}(2130 \mathrm{mils})$ out to $4,000 \mathrm{~m}$.
3.	Hy AD	Thunderbird 2	60,000 ft *	$\text { (total } \mathrm{FS} 1 \text { weight) }$	HE	4	Propellant. Solid fuel. Guidance. Semi-active using target illuminating radar. - Trg figure only.

RADAR USED BY AD ARTY

Serial	Type of Set	How Carried	Used By	Used For	$\begin{gathered} \text { Displayed } \\ \text { Range } \end{gathered}$	Remarks
(8)	(b)	(c)	(d)	(8)	(f)	(E)
1.	Redar AA No 4 Mk $7 / 1$ and Radar AA No 4 3k 7/3	Self-contained tir towed by a 10 -ton tractor.	Llad	Local wne	$\begin{array}{r} 35 \mathrm{~km} \\ 70 \mathrm{~km} \\ 105 \mathrm{~km} \\ \hline \end{array}$	Normally used on a displayed range of 35 km .納 3 is fitted with 3qII.
2.	Radar AA No 7 Mk 4	Mtd on same chassis as $40 / 70$ gun and towed by lo-ton tractor.	LLAD	Tgt acquisition and tracking	16 km	Commonly known as FCE7. Used with 40/70 gun.
3.	Radar AD No 10 Mk 1	Self-contained tlr towed by $10-$ ton truck. Aerial removed and carried on towing veh during transit.	Thunderbird 2	Tgt illumination	Classified	Can also travel with aerials in semi-retracted position.
4.	Radar $A D$ No 11 Mk 1	Two self-contained tlrs towed by 10 -ton tractors.	Thunderbird 2	Tac con	Classified	Both radars used together with a bty CP (2×5-tion
5.	Radar AD No 12 Mk 1	Self-contained tlr towed by 10 -ton tractior.	Thunderbird 2	Height finding	Classiried	tirs) for tac con.

LOC BOPTS

cozial	Type of Bqpt	E\%M Carrled	Used By	Used For	Capability	Rem8rks
(3)	(b)	(c)	(d)	(8)	(S)	(2)
\%	5 rg eqpt	FY 432 or truck 3-t on, and truck s-ton	$S \mathrm{rg}$ tps of I oc regt Loc bity of strat res.	Loc guns. Sacondary roies: B. LOC of mortars. b. Adjustmant of fire.	Fix within 100 m up to $1 \frac{1}{2} \mathrm{x}$ base length or within 200 m up to $2 \frac{1}{2} x$ base length. Usual base length 10,000 $12,000 \mathrm{~m}$. Computar can store info on 60 tgts. Accuracy affected by high winds. Swamped by intense activity.	Ona pars rg tp. Approx 3 hrs to deploy. Response time - 3 mins.
2.	USD 501 Irone	Truck 3-ton	Sury bty of lac regt. Loc oty in atrat res.	Confiniming tgts. Tgt acquisition. Gen gurvaillance. Post strike anslysis.	Total range -90 km . Flt paths pre-planned with up to 3 turns. Cransas oan be op tigice per gortis. Total area photograpiod per sortie: $\begin{aligned} & \text { Day } 1 \mathrm{t}-1.5 \mathrm{~km} \times 45 \mathrm{~km} \\ & \mathrm{Ki} \quad-1.5 \mathrm{~km} \times 5 \mathrm{ki} \end{aligned}$ Tp capablo of 3 mans par 2 hra . Responsa tima - approx 50 itins from receipt of msn to delivary of negatives.	Performance classifisd. Data in colm (i) for trg purposes only. Sixtean drones per tp. However the sustained rato of a tp wald ba spprox 20 msns per day.
3.	Radar No 8 Kk 1 (Green Archer)	$\begin{aligned} & 1-\operatorname{ton} a r y \text { or } \\ & \text { Seracon } \end{aligned}$	Loc tps of ed refts. Loc Dty atrat res. LOC tp FARELP.	Loc mortars. Adjugtmant of arty and mortar fire.	Fix well within 100 m under optimum siting conditions. yax range 10,000 mior $81-$ min morkars. Longer for med and hy mortars. Scans 40° (710 mils) arc. Hy rain can halve range.	Two per aect. Horks 1ndependently. Time into action - 6 ming given survey. Locating time - approx 15 gecs. S1l mit genergter.

рәłэәł๐ィ

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { Ser } \\
\& \text { ial }
\end{aligned}
\]} \& \multirow[t]{2}{*}{留pn} \& \multirow[t]{2}{*}{Cal} \& \multicolumn{3}{|l|}{Svc Rates of Pire} \& \multirow[b]{2}{*}{Max Eff Range} \& \multirow[b]{2}{*}{Remarks} \\
\hline \& \& \& Rapid \& Norpal \& Slow \& \& \\
\hline （a） \& पर 5 ¢ \& （c） \& （d） \& （e） \& （P） \& \& \\
\hline \({ }^{1 .}\) \& \& 7．62－遐 \& \& 5 rom \& \(\xrightarrow{\sim}\) \& Sighted to 600 m，but rarely used in action over \(300-350 \mathrm{~m}\) ． \& Salf loading Hag capacity 20 rounds． Welght 9 lbs \(60 z s\) ． Carried by all offrs （liess thosa at bn HQ），sect comds and all ren． \\
\hline 2. \& \[
\begin{aligned}
\& \text { SHG } \\
\& \mathrm{HCR}
\end{aligned}
\] \& Sun \& \multicolumn{3}{|l|}{Bursts of \(2-3\) rounds or single shots} \& \(200^{\prime \prime}\) \& Xag capacity－ 34 rounds．Carried by offrs at bn HQ，most sigs，sp wpns and admin pers，dvrs and att pers：total in the 日n 233. \\
\hline 3. \& P25tot \& 8 \& \multicolumn{3}{|l|}{\[
\begin{aligned}
\& 6 \text { rounds in } 5 \\
\& \text { seconds }
\end{aligned}
\]} \& 20－25 \& \begin{tabular}{l}
Mag capacity－ 13 rounds． \\
Weight \\
2 los 5 ozs with \\
full mag．Hald as \\
a pool in each bn for \\
special reguirements．
\end{tabular} \\
\hline \multirow[t]{2}{*}{4.} \& \& \begin{tabular}{l}
\[
7.62-
\] \\

\end{tabular} \& 100
300 \& 25 rpm \& － \& 800 min \& \begin{tabular}{l}
special reguiremonks． \\
\(53 \ln\) a bat． \\
\(\frac{10}{3}\) in a rifle coy． \\
3 in a rifle pl． \\
Belts of 50 rounde． \\
950 rounds carried \\
in a rifle．sect．
\end{tabular} \\
\hline \& \[
\begin{aligned}
\& \text { GPGG } \\
\& \text { (SP } \\
\& \frac{\operatorname{SOD}}{201}
\end{aligned}
\] \& \[
\begin{aligned}
\& 7,62= \\
\& \min
\end{aligned}
\] \& \[
200
\]
rpm \& \[
\begin{gathered}
100 \\
\text { rpp }
\end{gathered}
\] \& － \& 1,800 ia
（1，100 ma by
day \(\quad\) burn
out range of
tracer） \& \begin{tabular}{l}
The it role GFMG \\
is given a sustained fire capability by use of conversion kit containang 2 barrels，dial sight and tripod． conversion kits per Mifle coy．
\end{tabular} \\
\hline 5. \& \[
\frac{2-i n}{\text { unctar }}
\] \& － \& 304 \& 8 Trnmern \& 4 \& 450 II \& Qna in aach riple pl． 18 bombs（smoke and illuminating） normally caryied． \\
\hline 6. \& \& -
- \& 12 \& 8 9\％000 \& \[
\begin{aligned}
\& 4 \\
\& \text { rpm }
\end{aligned}
\] \& 5，000 m \& （somge with VT fuse）， smoke，coloured smoke and para \(111 u m i n a t i n g\) bombs casried． \\
\hline 8. \& \[
\begin{aligned}
\& \text { Grenede } \\
\& 36
\end{aligned}
\] \& － \& \& \& \& 25－35 \& Thrown by hand． Thrower must be behind cover． \\
\hline 8. \& \[
\begin{aligned}
\& \text { Crenade } \\
\& \text { E0 } \\
\& \text { Smokes }
\end{aligned}
\] \& － \& \& \& \& \[
\begin{aligned}
\& \text { Can be thrown } \\
\& 25-35 \mathrm{~m} \text {. }
\end{aligned}
\] \& White phosphoris． \\
\hline 9. \& \[
\begin{aligned}
\& \text { Grenade } \\
\& \text { G3 } \\
\& \text { Soloured } \\
\& \text { Smok }
\end{aligned}
\] \& － \& \& \& \& \& Supplied in red， yellow，green and blue． \\
\hline 10. \& Crenade \({ }_{\text {charga }}\) \& 75－面面 \& \& \& \& 75 m \& Not is isued to APC bn Inf bn scale is 8 launchers per mifle 01 and 10 spare． \\
\hline 11. \& \& 180－ \& \& \& \& 400 m（HEAT）
moving tgts
500 m（heAT）
\(5 t a t i c t g a t s\)
1800 m
\((111 u m i n a t-\)
ing） \& Panetrates \(10-1 \mathrm{n}\) armour．In APC bn scale is 4 per rifle pl and recce ple 2 per sp pl plus 5 total for bn HQ and HQ Coy．Inf bns 1 per rifle and admin pl， 4 for recce pl plus 3 total for bn HO and HO COV． \\
\hline 12.

13. \& | hompat |
| :--- |
| Bach gun |
| has an |
| .551 MG |
| as the |
| subcal |
| rang ing |
| device． | \& 120 \& Yax ra sbout \& or 1 aimed \& \& Mormal battion

range, 000 m
against moving
tges； $2,200 \mathrm{~m}$
against
stationary
tgts． \& Back blast 15 consi－ derable，a cone shaped danger area axtending Irom behind the gun at about 40 and for a a 100 yds ． Provided tps are dug in，the danger over 20 yois is not araat．

\hline $$
13 .
$$ \& VIGlant \& In \& \[

$$
\begin{aligned}
& 15-20 \\
& \text { betwe }
\end{aligned}
$$

\] \& conds shots \& \& \[

\frac{1}{\min)} 500 \mathrm{~m}(275 \mathrm{~m}
\] \& penetrate armour of all known txs if angle of impact is good．

\hline
\end{tabular}

1. For reasons of security, it is not permitted in avery case to give actual scales of issue and performance ingures. In stapf college exercisas the asaumptions listed below are to be made for eqpts in British eve. Bn eqpts will be assumed to have comparable performance unless stated to the contrary. Ranges are queted for best conditions.
Intugncad
2. Inf Bn Infra-red.
a. Wpa Sight.
(1) $\frac{\text { Rapage }}{}$ (1) 300 m (inating). (increased to 600 m with TK Infra-red Searchlt
(2) Bule Coy Scale.

Coy HQ	
Rach sect	1
Mortar/Garl Gustav	1
\#ombats	$\frac{1}{2}$
Total	13

b. Compn Usex Binoculars and Yeh Headit Fllters.
(1) Range. 80 m .
(2) Bn_Scsig. P ech vehs.
c. Head utc Mar Derice.
(1) Bange. 600 m .
(2) R1fle Coy Scrie. 15.
(3) Recce P1 Scale. 9,
3. Arad_Reat Infra-red.
a. Hpn Sight.
(1) Kange Using Own Source. 800 m .
(2) Fange lieing Elank Source. 1,200 m.
b. Drivind Aid. Range 80 m.
c. AFV Wing Dovice. Range $1,000 \mathrm{~m}$.
d. Scale.
(1) Chieftain 100\%.
(2) Centurt on 100s.
(3) Recce $\mathrm{Tp} \quad$ 100\% driving aids.
(4) F and Al Echs 100% driving aid s.
4. Acmd Car Regt. P and Al echelons 100% driving alds.
5. Enge.
a. Hanad. Torchos.
(1) Range. 10 m.
(2) Scale. Special issue.
b. Driving Aid.
(1) Range. 80 m .
(2) Scale. F ech vehs.

Radar
6. Itג Radar.
a. Performanis.
(1) Range Vehs. $2,000 \mathrm{~m}$.
(2) Range Mon. 700 m .
(3) Can only detect moving tgts.
(4) Manpack.
b. Power. Bty.
c. Scele. Three sets per coy.
7. All.Arms Rader.
a. Performanca.
(1) Renge - Vehs. $5,000 \mathrm{~m}$.
(2) Range - Men. $2,500 \mathrm{~m}$.
(3) Can only detect moving tgts.
(4) Two-man load.
b. Power. Bty.
c. Scald.
(1) Bn Racce P1 4
(2) Armd Regt Recce $T p$
(3) Arty OPs 1 each
8. Anti-radar Doyices. These devices are still only under development.

9. Hon Sight with Tk Sosranlt.
a. Bance Using Ond Source. $1,000 \mathrm{~m}$.
b. Range Using Elank Source. $1,500 \mathrm{~m}$.
c. Scale All tks.
10. 105mm SR - Pace Piare.
8. Bemge. $12,500 \mathrm{~m}$ approx.
b. Duming mime. 20 seconds.
c. Elret. Ling. 12 rpg .
11. Slum Pame Plare.
A. Benge. 3,000 m .
b. Buming mipe. 40 seconds.
c. Etrat Line. 4 rpg.
12. Card Gustay Para Flare.
a. Bange. 1,800 m.
b. Burging T10g. 26 seconds.
c. Seale with Fm .4 rpg .
13. Hand-held Flarg.
a. Range. 300 m .
b. Bueatar.T1me. 25 seconds.
c. Scale Special for op.

Naydgation A1d8

14. Performaice.
a. Accuracy. 2% of distance moved since resetting.
b. Into. Grid ref and heading.
c. Scale.
(1) InP Bn.
(a) Bn HQ
(b) Coy Comd's Veh 2
(c) Recce PI 1 each
(d) Mortar Sects Total

1 each
(2) Ang Regt.
(B) Sqn HQ

2
(b) Each Tp
(c) Recce Tp

1
1 per scout car
рәґэәцо

Serial	Veh	Arat	Helght	Height	Length	Width	Patroleura	Range	Ammo
(a)	(b)	(c)	(d)	(e)	(1)	(E)	(b)	(i)	(i)
D \qquad 1.	Centurion 105 mm		51 tons	$9^{\prime} 7 \frac{1}{2}$	32' $4^{\prime \prime}$	11' ${ }^{\prime \prime}$	228 gals (4 T 80)	$\begin{aligned} & 150 \text { miles (} \mathrm{Pds} \text {) } \\ & 65 \text { miles (mixed } \\ & \text { mov) } \end{aligned}$	$\begin{aligned} & 70 \text { rounds } x \\ & 105-\min \\ & 24 \text { belts } \\ & 250 \text { rounds } \\ & .30-\text { in } 4 G \end{aligned}$
	Chieftain	$\begin{aligned} & 1 \times 120-\mathrm{mm} \\ & 1 \times 7.62-\mathrm{mm} \text { coaxial } \\ & 1 \times \mathrm{WG} .62-\mathrm{mm} \text { comids } \\ & 1 \times 7 G \\ & 1 \times 50-\mathrm{mm} \text { ranging } \end{aligned}$	51 tons	$8{ }^{1}$	32' 3 "	$11^{\prime} 6^{\prime \prime}$	$\begin{aligned} & 210 \text { gais (any } \\ & \text { fuel but DIESO } \\ & \text { is best) } \end{aligned}$	$\left[\begin{array}{l} 250 \text { miles (rds) } \\ 160 \text { miles (mixed } \\ \text { mov) } \end{array}\right.$	$\begin{aligned} & 53 \text { rounds } x \\ & 120 \text {-iman } \\ & 30 \text { belts } x \\ & \text { wG } \end{aligned}$
3.	$\frac{\text { Saladin }}{(a r n d)}$		13 tons	$7^{\prime \prime} 5^{\prime \prime}$	26^{1}	$8^{\prime} 3^{\prime \prime}$	53 gals (MT 74)	$\begin{aligned} & 240 \text { miles (rds) } \\ & 200 \text { miles (mixed } \\ & \text { mov) } \end{aligned}$	$\begin{aligned} & 42 \text { rounds } x \\ & 76-\operatorname{ma} \end{aligned}$
4.	(wheelled APC)	$1 \times .30-\mathrm{in} \mathrm{MG}$	10 tons	81	$16^{\prime} 4^{\prime \prime}$	8' 3'	44 gals (MP 74)	220 miles (rds) 170 miles mov)	-
5.	$\begin{aligned} & \text { FV 432 } \\ & \text { (tracked aPC) } \\ & \text { FV } 432 \\ & \text { (tracked aw } \\ & \text { hauchar) } \end{aligned}$	$\begin{aligned} & 1 \times 30-\text { in } H G \text { (in armd } \\ & \text { regts) } \\ & 1 \times \text { CfPYG (in inf bns) } \\ & \text { Swinginge } \end{aligned}$	13 tons	$6^{*} 5^{\prime \prime}$	$17^{1} 6^{\prime \prime}$	$8^{1} 9 \frac{1}{17}$	80 gals (k' 80)	$\begin{aligned} & 290 \text { miles (rds) } \\ & 150 \text { miles (mixed } \\ & \text { mov) } \end{aligned}$	$\xrightarrow[\substack{14 \text { msls on } \\ \text { vens }}]{-}$
6.	$\begin{gathered} \text { Rerret MK I } \\ \text { (scout car } \\ \text { liaison) } \end{gathered}$	2 \times. 30-in MG	4 tons	$4^{\prime} 8^{\prime \prime}$	12' ${ }^{\prime \prime}$	$6^{\prime} 3^{\prime \prime}$	21 gais (kT 74)	$\begin{aligned} & 200 \text { milles (rds) } \\ & 120 \text { miles (mixed } \\ & \text { mov) } \end{aligned}$	-
7.	$\frac{\text { Rerret uk II }}{\left(\begin{array}{l} \text { scout car } \\ \text { recce }) \end{array}\right.}$	$1 \times .30 \mathrm{~min} \mathrm{Mg}$	4 tons	$6^{\prime} 2^{\prime \prime}$	$12^{\prime \prime} 7$	6'3"	21 gals (tm 74)	As MK I	-
8.	$\begin{aligned} & \text { Hornet } \\ & \text { modified i-ton } \\ & \text { armd) } \end{aligned}$	Malkare	$5 \frac{1}{2}$ tons	$7{ }^{7}$	$16^{\prime} 2^{\prime \prime}$	6' 9*	32 gals (4P 74)	250 miles	$4 \mathrm{msls} \text { veh }$

B. VRE CHARMCTBRISTICS

Voh Type	Wake	Unladen (1bs)	$\begin{aligned} & \text { Hadon } \\ & \text { Telght } \\ & (1 b s) \end{aligned}$	Dimansians					$\begin{aligned} & \text { TVorago } \\ & \text { Max Speods } \end{aligned}$		$\begin{gathered} \text { Approx } \\ \text { (mpg } \\ \text { (minning }) \\ \text { running } \end{gathered}$		Remarks
				Helght	Length	\%idth	Track	Theel Bass	$\begin{gathered} \text { Rds } \\ (\text { nyw }) \end{gathered}$	$\begin{aligned} & \text { Crosse } \\ & \text { country } \\ & \text { (mph) } \end{aligned}$			
(a)	(b)	(c)	(d)	(9)	(1)	(2)	(6)	(1)	[1]	-	(1)]	(a)
1) 10.500 CC	Triumph	370	-	$3^{\prime} \cdot 5$	$6^{\prime} 8^{\prime \prime}$	$2^{\prime} 4^{\prime \prime}$	-	$4^{\prime} 7^{\prime \prime}$	55	20	70	200	
ILR. CARCO, E-TON	Sankey	830	1,950	3' 3^{n}	$9^{\prime \prime} 6^{4}$	$4^{\prime \prime}{ }^{\prime \prime}$	4^{\prime}	-	-	-	-	-	
THR C CARCO. $1 \rightarrow T \mathrm{TON}$	Sankey	2,580	3,760	$5^{\prime} 4^{\prime \prime}$	11' $6^{\prime \prime}$	$B^{\prime \prime}{ }^{\prime \prime}$	$5^{\prime} 8^{\prime \prime}$	-	-	-	-	-	
GAR UnILITY. ${ }^{\text {S T-TON }}$	Rover Mk ?	3.696	5,626	$6^{\prime} 7^{n}$	14' $10^{\prime \prime}$	$5^{\prime} 4^{\prime \prime}$	$4^{\prime} 2^{\prime \prime}$	$9^{\prime}{ }^{\prime \prime}$	45	15	16	200	Can be FF\%
TRUCK GS.	Rover mix 8		4,765	$6^{4} 4^{\prime \prime}$	12' $5^{\prime \prime}$	$5^{\prime} 7{ }^{\prime \prime}$	$4^{\prime} \quad 2^{\prime \prime}$	$7^{\prime \prime} 4^{\prime \prime}$	45	15	16	220	Can be FFM
TRUUCK CS, $\frac{1}{8}-\mathrm{TON}, 4 \times 4$	Austion	3,668	4,480	$6^{1} 2^{\prime \prime}$	12^{\prime}	$5^{*} 5^{\prime \prime}$	$4^{\prime \prime} 1^{\prime \prime}$	$7{ }^{\prime}$	50	20	12	300	Can be FFY
TRUS GS. 1-TON	Austin K9	6,300	10,192	$8^{3} 8^{n}$	17' 2^{n}	$7{ }^{\text {\% }}$ 3 ${ }^{\text {n }}$	5^{+}11"	111 ${ }^{\prime \prime}$	45	12	12	300	Can be RFM
RTRUCK GS, 1-TON	Morris WRA 1	7,140	10,000	$8^{\prime \prime} \quad 9^{\prime \prime}$	$17^{\text { }} 8^{\prime \prime}$	$6^{2} 10^{n}$	$5{ }^{\prime \prime} 11$	$10^{\prime} 3^{\prime \prime}$	45	12	10	250	Cas be FF\%
TRUCK 1-TON ARMD	Humber	9,260	12,432	7^{1}	$16^{\prime \prime} 1^{\prime \prime}$	$6^{\prime} 9{ }^{\prime \prime}$	$5^{\prime \prime} 8^{\text {n }}$	91	40	20	8	250	Can be FF\%
TRUCK AHB 3-TON	Ford E3	10,864	12,318	$10^{\prime \prime} 8{ }^{\prime \prime}$	20, $10^{\prime \prime}$	$8{ }^{\prime}$	8^{5}	$12^{\prime \prime} 6^{\prime \prime}$	40	12	8	280	4 stretchers
PRUCK CARGO, 3-TON	Bedford RL	9,838	18,838	$9^{\prime} 10^{\prime \prime}$	$20^{1} 11^{\prime \prime}$	$7^{\prime} 10^{\prime \prime}$	$6^{\prime \prime} 14$	13^{\prime}	40	12	8	250	Carries 20 men in TCV role
THUCK HIGH	$\begin{aligned} & \text { Alvis } \\ & \text { (Stalwart) } \end{aligned}$	18,613	29,813	8* ${ }^{\prime \prime}$	20^{17}	$8^{\prime} 4^{\prime \prime}$	$6^{\prime \prime}{ }^{\prime \prime}$	-	41	35	2.5	250	
TRUCX CARGO. 10-TON	ARC	21,952	44,353	12' $9^{\prime \prime}$	$23^{\prime} 10^{\prime \prime}$	8^{\prime}	$6^{1} 6$	$12^{\prime} 10$	30	10	6	300	$\begin{aligned} & \text { Driva } 6 \times 4 \\ & \text { DIRSO } \end{aligned}$
TRUCK CARGO, 10-TON	Leyland	30,184	53,760	12'	$30^{\prime} 10^{\prime \prime}$	$8^{\prime \prime} 8^{\prime \prime}$	$6^{\prime \prime} 10^{n}$	17' $9^{\prime \prime}$	30	12	2.5	300	Drive 6×6
TRACTOR RBC YRD	Scamell	26,180		$10^{\prime} 4^{\prime \prime}$	$20^{1} 7^{\prime \prime}$	$8^{8} 6^{\prime \prime}$	$7^{\prime} 1^{\prime \prime}$	11' 6"	30	12	2.5	300	16-ton winch
TBACTOR GS. TK. TPTR. P1TH 2 LB	$\left\lvert\, \begin{aligned} & \text { Thorrieyeroft } \\ & \text { ANTAR } \end{aligned}\right.$	85,000	220,000	$14^{+} 6^{\prime \prime}$	62^{\prime}	23'1"	7' 6"	-	25	5	1	200	

Sariel	Ship	Range and Sperd	Hellcopters/ Landing Craft	Crane Lift	$\underbrace{\substack{\text { Lift }}}_{\text {Typical }}{ }^{\text {Troop }}$	Typical Litt	Bulk Puel	Bulk Watar
(a)	(b)	(c)	(])	(6)	(1)	(E)	(h)	(i)
1.	Commando ShiI (LFH) BULIHARK	a. 3,000 at 27 kts	$\begin{aligned} & 4 \text { LCVP } \\ & 18 \text { Wossex } \\ & \text { Helicopters } \end{aligned}$	6×11 tons	a. Commando Group 900-more than 3 weeks b. 1 , 200 - less c. 1,550 if no helicopters	55×3 ton equivalents	a. AVGAS/MOGAS 200 tons b. AVCAT 1,000 tons c. $\begin{array}{l}\text { D1B50 } \\ \\ 300 \text { tons }\end{array}$	435 tons
2.	Assault Ship (LPD) FEARLESS INTREPID	6,000 at 20 kts		$\begin{array}{ll} 1 \times 15 & \text { tons } \\ 1 & \times 6 \\ t \end{array}$	a. 340 for long peri ods b. 600 for periods up to days	a. 20 main Battle Tanks 43×3 ton equivalents 50 tons stores b. 1,600 tons		320 tons
3.	$\begin{aligned} & \text { LSL LIRCETOT } \\ & \text { SIR LANC } \\ & \text { etc } \end{aligned}$	a. 6,000 at 17 kts b. 7,800 at 15 kts	Either 6 LCVP 4 Pontion regts 240 ort of Pontoon caus eway	$\begin{aligned} & 2 \times 20 \text { tan } \\ & 2 \times 3 \text { ton } \end{aligned}$	a. 340 for long periods b. 600 for periods up to 7 digy at expense of venicles	```a. 16 Tanks \(66 \times 3\) ton equiva- lents 150 tons stores or b. 1,300 tons```	a. $A V G A S /$ YOGAS 110 tons b. aveat 50 tons c. Dieso 50 tons	300 tons
4.	$\begin{aligned} & \text { Heavy Lifts } \\ & \text { Ship } \end{aligned}$	$10,000 \mathrm{st} 15 \mathrm{kts}$		50 tons	150 men	a. 10,000 tons stores b. 100 Tanks 200 tons stores c. 40 Tanks 16×3 ton equivalents 200 tons stores		-

Note: The above figures are to be used in preference to those in JSP IV.

SRA LIM CAPABILITY

\ddots

Ac	Passangers (b)	Speed (kts)	$\begin{aligned} & \text { Max } \\ & \text { Operating } \\ & \text { Height (ft) } \end{aligned}$	$\begin{gathered} \text { Landing Strip } \\ \begin{array}{c} \text { (yds) } \end{array} \\ \hline \end{gathered}$	Fael	$\begin{aligned} & \text { Range } \\ & (\mathrm{nm})^{2} \end{aligned}$	$\underset{(\mathrm{hrs})}{\text { Endurance }}$	$\begin{aligned} & \text { Utilisation } \\ & \text { Rate } \\ & \text { (hrs/month) } \end{aligned}$	Remarks
1	(b)	(c)	(d)	(e)	(f)	(g)	(6)	(i)	Sil
hlouette	4	80	6,000	Circle radius 25	AVTAG or AVTUR	200	$2 \frac{1}{2}$	40	Two strotcher cases and one sitting cas can be carried.
DH Boaver	5	110	8,000	$300-350 \times 25$	$100 / 130$	550	51	45	Two stretcher cases and two sitting cas can bs carried.
Scout AHl	4	100	7,000	Circle radius 25	$\begin{aligned} & \text { AYTUR or } \\ & \text { AVTAG } \end{aligned}$	250	2	35	Three stretcher cases and one sitting cas can be carried.
Skeeter 12	1	75	3,500	Circle radius 25	$\begin{aligned} & 100 / 130 \\ & \text { IVGAS } \\ & \hline \end{aligned}$	130	14	30	Will not opin tropical climates.
Sioux AHI	2	70	17,000	. Circle radius 25	100/130	250	4	${ }^{40}$.	Two stretcher cases can be carried.

Notes:

1. Colm (d) refers to the max height above mean ses level of the strip or Le from which the ac cen op.
2. Colm (i) utilisation rate allows for ac unserviceability. Thus, for planning purposes, a recce fit with three Skeeters should be able to get 90 flying hrs out of its Skeeters in one month.
3. The Alouette and Scout both have a gas turbine engine.
PERFORYANCR DEAAILS OP CURREAT STRATRGIC TRANSPORT SST) AQ

Ac Type	Lax Payload /Range	Kax Range /Payload	$\begin{aligned} & \text { Cruisa } \\ & \text { Speed } \end{aligned}$	$\begin{aligned} & \operatorname{Max} \\ & \operatorname{Tps} \end{aligned}$	Max Stretchars	Cargo Compartment	Notes
(A)	(b)	(c)	(C)	(8)	(1)	(2)	(5)
Britannia	$\begin{aligned} & 31,700 \mathrm{lbs} \\ & 12,600 \end{aligned}$	$\begin{aligned} & 3,600 \\ & 120,000 \mathrm{lbs} \end{aligned}$	300	110	53	$68^{\prime} \times 6 . \times 10^{\prime}$	2. Ferry Range, 4,000 nm. ${ }^{\text {a }}$
Comet 2	$\begin{aligned} & 11,500 \mathrm{lbs} \\ & 11,500 \end{aligned}$	$\begin{aligned} & 1,780 \\ & 15,900 \text { lbs } \end{aligned}$	400	44	6	Pax only	1. Ferry Range, 1,950 nm.
Comet 4C	$\begin{aligned} & 20,000 \mathrm{lbs} \\ & 1,800 \end{aligned}$	$\begin{aligned} & 2,600 \\ & 18,000 \mathrm{lbs} \end{aligned}$	410	94	12 (8 per noratal op)	Pax only	1. Ferry Range, 2,800 nm.
VC 10	$\begin{aligned} & 53,000 \text { lbs } \\ & / 3,300 \end{aligned}$	$\begin{aligned} & 4,000 \\ & 130,000 \mathrm{lbs} \end{aligned}$	460-480	150	36	Length $80^{\circ} 4^{\prime \prime}$ (galley removed) Pidth $10^{\prime \prime} 7^{\prime \prime}$ tapering at rear to $9^{\prime} 8^{\prime \prime}$ He1ght 7' $7^{\prime \prime}$	1. Ferry Range, 5,000 nm. 2. Flt refuelling recaiver capability.
Belfast	$\begin{aligned} & 77,500 \mathrm{lbs} \\ & / 460 \end{aligned}$	$\begin{aligned} & 2,600 \\ & 130,000 \mathrm{lbs} \end{aligned}$	250	147	NIL	Length $63^{+} 4^{n}+21^{+} 8^{\prime \prime}$ ramp either Width 10^{\prime} Height 22^{\prime} or width 12' Height 21^{\prime} Max Height $13^{\prime} 4^{\prime \prime}$	1. Ferry Range, 3,500 nm. 2. Fit refuelling receiver capability.

1. The range payload figures will have to be adjusted for local effects of temperature, height of airfield and humidity. In addition, the wat (Weight and Temperature Limitation) factor, will on occasions limit the payload to enable the ac to take off in accordance with the regulations for flt to full safety standards.
2. The difference between the max range shown in colm (c) and the ferry range quoted under the last colm are caused by ac structural limitations, ie the extra fuel to achieve max ferry range prevents a payload being carried. 3. The comet 2 is due to be withdrawn from sve in 1967.
PERFORMANCE DETAILS OF CURREAT TACTICAL TRANSPORT (TAC T) AC (TEMPERATE CLIMATES)

Ac Type	Max Payload /Range	Max Range	Radius of Action /Payload	$\begin{aligned} & \text { Cruise } \\ & \text { Speeed } \end{aligned}$	Tps	Para	Stretchers	Sup Dropping Capability	Cargo Compartment
(8)	(b)	(c)	(d)	(8)	(I)	(2)	(h)	(I)	(1)
Beverley	$\begin{aligned} & 31,300 \mathrm{lbs} \\ & / 300 \end{aligned}$	$\begin{aligned} & 2,050 \\ & \text { /NIL } \end{aligned}$	$\begin{aligned} & 750 \mathrm{~nm} \\ & / 10,000 \mathrm{lbs} \end{aligned}$	155	94	$\begin{aligned} & 70 \\ & (60) \end{aligned}$	48	1-tan-16 H/D -1 MSP -2 SSP -4	$40^{\prime} \times 10^{\prime} \times 10^{\prime}$
Hastings	$\begin{aligned} & 14,500 \mathrm{lbs} \\ & 11,150 \end{aligned}$	$\begin{aligned} & 2,320 \\ & 14,300 \mathrm{lbs} \end{aligned}$	$\begin{aligned} & 750 \mathrm{~nm} \\ & 11,500 \mathrm{lbs} \end{aligned}$	205	44	30	32	SEAC PACKS AB Panniers HARNESS PACKS	42' $6^{\prime \prime} \times 9^{\prime} \times 6^{\prime} 6^{\prime \prime}$
Argosy	$\begin{aligned} & 26,900 \mathrm{lbs} \\ & 1180 \end{aligned}$	$\begin{aligned} & 1,660 \\ & \text { see notes } \\ & 3 \text { and } 4 \\ & 13,250 \mathrm{lbs} \end{aligned}$	$\begin{aligned} & 750 \mathrm{~nm} \\ & / 5,000 \mathrm{lbs} \end{aligned}$	220	69	$\begin{gathered} 50 \\ (42) \end{gathered}$	48	$\begin{aligned} & \text { l-ton }-8 \\ & \text { H/D }- \text { MIL } \\ & \text { MSP }-2 \\ & \text { SSP }-4 \end{aligned}$	$\begin{aligned} & 4^{\prime \prime} \times 6^{\prime} 8^{\prime \prime}\left(8^{\prime} 6^{\prime \prime}\right. \text { for } \\ & \text { the rear } 15^{\prime \prime} \times 10^{\prime} \\ & \text { see note } 2 \end{aligned}$
C-130K	$\begin{aligned} & 45,000 \mathrm{lbs} \\ & / 2,200 \end{aligned}$	$\begin{aligned} & 4,000 \\ & 120,000 \mathrm{lbs} \end{aligned}$	-	300	92	64	74	-	$41^{\prime} \times 10^{\prime \prime} 3^{\prime \prime} \times 9$.

Notes:

1. The range payload figures must be adjusted for local effects of tamperature, height of airfield and humidity. In addition the WAT (Weight and Temperature Limitation) factor, will on occasions, limit the payload to enable the ac to take off in accordance with the regs for flt to full safety standards.
2. The Argosy fuselage is constricted.
3. The Argosy has on in flt refuelling capability.
4. The argosy can be fitted with long range tks.
5. In colm (g) the unbracketed para figure for Beverley and argosy ac is the max number which can be carried. The bracketed figure is the nomal op load for tac drop.
6. $\mathrm{C}-130 \mathrm{~K}$ (Hercules) is due in sve in 1867.
PERPGRHANGB DETSALS OR CURRRKT TAC T AC AND HIELS (COMT)
(TRMPBRATE CLIMATBS)

Ac Type	Range/ /Payload		$\begin{aligned} & \text { Perry } \\ & \text { Range } \end{aligned}$	$\operatorname{Lax}_{\text {Loads }}^{\text {Hax }}$	$\begin{aligned} & \text { Cruise } \\ & \text { Speed } \end{aligned}$	Tpe	Para	Stretchers	$\xrightarrow[\text { 1-ton }]{\text { Contsiners }}$	Pounds on HOOK
	$\begin{aligned} & \text { Radius of } \\ & \text { Act1onn } \\ & 50 \mathrm{~nm} \end{aligned}$	$\begin{aligned} & \text { Radius of } \\ & \text { Action } \\ & 100 \text { nill } \end{aligned}$								
(a)	(b)	(c)	(8)	(e)	(3)	[81	(h)	(1)	121	(2)
Singie Pioneer	1,000 lbs	1,000 lbs	850	1,000 1bs	70	4	IIL	1	-	N
Twin Ploneer	3,080 lbs	2,800 1bs	640	3,080 ibs	85	10	8	9	-	NA
Andover		$\begin{aligned} & 12,000 \mathrm{lbs} \\ & \text { OL } \\ & \mid 5,000 \mathrm{lbs} \end{aligned}$	2,700	12,400 186	200	40	25	10	5-6	NA
Belvedere	$\left[\begin{array}{c} 2,600 \text { lbs } \\ \text { (VTO) } \\ 3,200 \text { lbs } \\ \text { (cush10n TO) } \end{array}\right.$	$\begin{gathered} 1,2001 \mathrm{lds} \\ \text { (YT0) } \\ 1,700 \text { 1bs } \\ \text { (cush10n T0) } \end{gathered}$	$\begin{aligned} & 400 \\ & \text { (Teng) } \\ & 360 \\ & \text { (Trop) } \\ & \text { LR TK } \end{aligned}$	$\begin{aligned} & \text { 6,000 lbs } \\ & \text { (internal) } \end{aligned}$	200	18	10	$\begin{gathered} 8 \\ \text { (normal) } \\ 12 \\ \text { (eniergency) } \end{gathered}$	-	5,000
Whirlwind期 10	$\begin{gathered} 1,000 \text { 1bs } \\ \text { (VTO) } \\ \text { i, 250 1bs } \\ \text { cushion }{ }^{2} 0 \text {) } \end{gathered}$	$\begin{array}{c\|} 350 \text { Ibs } \\ \text { (YTO) } \\ 600 \text { 1bs } \\ \text { cushion } T 0) \\ \hline \end{array}$	300	2,000 lbs	80	10	5	6	-	2,000
Tessex 2 and 5	2,550 lbs	1.450 2 bs	LR $\begin{array}{r}400 \\ \text { FK }\end{array}$	4,000 1bs	90	15	12	8	-	4,000 $(14 \mathrm{k} 2)$

The fol are some or the terms frequently usad in connection with comas. Those marked * are the agreed NATO terms. The more tech ones have been omitted.

Term or Abbreviation	Meaning
ACT	Apparatus Carr Telephone (see Carr Rqpt).
ADPS	Automatic Data Processing Systems, a complete system based on the use of electronic computers for the solution of problems and the storage of info of a mil nature: The term also incls the means of comm between computers and betwen the input device and the computer when they are separated.
AM	Amplitude Modulation (see Modukation).
* Audio Preq	A freg which can be detected as a sound by the human ear. the range of audio freqs extends from 20 to 20,000 cycles per second.
Bandwidth	All those freqs lying betwoen two particular pts in the freq spectrum. It is usually expressed by the difference between these freqs.
Carr Bqpt	Eqpt which can provide more than one spesch channel over a comm system.
CPS	Carr Preq Shift. A method of tg usurliy found on radio systems, whers a sig is transmitted by slightiy displacing the fundemental freq on which the eqpt is working.
Channel	A band of freqs which can be used to provide either speach or tg comms between two places.
Channeliing Eqpt	See Carr Eqpt. The two are synonymous.
*Cipher, Off-inine	A method of eneryption which is not associated with a particular transmission system and in which the resulting cryptogram can be transmittod by any means.
*Cipher, on-line	An automatic mothod of encryption associated with a particular transmission system, whereby sigs are encrypted and passed dir to op the reciprocel sqpt at the distant sta.
- Circuit	An electronic path between two or more pts capable of providing a number of channels.
circuit, 2-wire	A coma system where the sigs priginated at each end use the same path, eg a normal telephone pt to pt link over a cable pair.
Circuit, 4-wire	A comm system where the send and receive dirs of signalling are kept physically or electricalily separate.
Crystal con	The use of the mech and electrical properties of a crystal (quartz or other similar minerals) to con the operating fraq of a radio system. This method is noted for its accuracy and stability.
*Cycle	One complets positive and one complete negative alternetion of a current or voltage.
- Duplex	The provision of corm between two pts in both dirs simultaneously.
Bxchange CB	Central Bty Exchange. An exchange with CB Pacilities is one where the user lifts his telephone to call an op. The op sees a lamp it up for the extension concerned. The power to op this lamp is provided from a bty system loc at the exchange.
* Pacsimile	A systeri of telecomm for the transmission of fixed images with a view to their reception in a permanent form.
*FDM	Freq Div uultipiex. A multiplex system in which two or more sigs are transmitted simultaneousiy over a common path, each sig occupying a dífferent freq band.
Preq	The number of cycles occurring in a fixed pertod of time, usually one second.
Fm	Freq wodulation (see Modulation).

Torm or Abbreviation	Meaning
Generator	Apparatus for producing AC electricity.
HF	High Freq. Radio ireqs between 3 and $30 \mathrm{Mc} / \mathrm{s}$.
Kc / s	Kllocycles per second. Thousands of cycles per secon
mc / s	Megacycles per second. Millions of cycles per second.
Modulation	Varying a fixed sig with the particular sig to be transmitted. This can be done in a number of whys eg AM varies the amplitude of the fixed sig in dir sympathy with the characteristics of the sig to be transmitted. FM varies the instantaneous freq of the fixed sig in dir sympathy with the characteristics of the sig to be transmitted, etc.
* Uultiplex	the gimultangous use of a number of chaniols on a single clrcult.
PM	Pulse Modulation (see Modulation).
Printed Circuit	A production method whereby int emal wiring of eqpt is dispensed with and replaced by an insulating material on which lines of metal are otched in such a manner that an electric current can flow to and from components wid on the material.
RR	Radio Relay. A means of provid ing by using radio techniques, circuits comparable with trae circuits.
Hepeater	A device to amplify a sie.
SHF	Super High Freq. 3,000 to $30,000 \mathrm{Nc} / \mathrm{s}$.
*Sidioband	The freq band above or below the carr, produced by the process of modulation.
Simplex	The provision of comms in one dir only at any one time.
*Swbd Magneto	A manual telephone exchange at which the subscribers and ops call and clear by means of magneto generators.
*Tape Relay	A method of receiving and retransmitting megs in tape form.
*TDM	Time Div muitipiex. A multiplex system in which the total aval circuit time is divided between the number of channels to be transmitted.
*Telecomm	Telecommunication. Any transmission, emission or reception of sigs, signs, writing, images and sounds or int of any nature by wire, radio', vis or other electromagnetic systems.
*Tg	A system of telecomm for the transmission of int by the use of a sig code.
*Telophony	A system of telecoma set up for the transmission of speach or, in some cases, other sounds.
Transistor	A device using semi-conductor materials which displays many of the advantages of the thermionic valve but reguires less powar and is smaller. At the present it surfers from limitations of freq and power handing capacity.
UHP	Ultra-High Freq. 300 to 3,000 Nc / s.
Watt	A unit of power. A powerful electric it bulb uses 100 watts. A single bar electric fire uses about 1,000 watts.
Wavelength	The distance, usually measured in metres, between any two adjacent identical pts on a waverom.
VF	Voice Preq, ie audio freq tones.
VHF	Very High Freq. 30 to $300 \mathrm{mc} / \mathrm{s}$.
Yagi Antenns.	A particular type of directional antenna to handle VHF sigs.

02102104

$\square_{\text {Serial }}$	Set	Repiac-	Principal	Other Roles	systas	${ }_{\text {Freq }}$ coverage	${ }_{\text {Ranige }}^{\text {(10te }}$ (min ${ }^{\text {a }}$	635	Number	(Weight	
				Oher Roies	systax	($\mathrm{Hc/s} /{ }^{\text {a }}$	Day	3 si	Channels	excl etys cter	Remarks
(a)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(1)	(i)	(k)	(1)
\square	4510	-	$\begin{aligned} & \text { Inf: Pl/coy } \\ & \begin{array}{c} \text { in } \\ \text { spacial } \\ \text { conditions } \end{array} \end{aligned}$	-	am	2-10	$\left\{\begin{array}{l} \text { Yoics. } \\ \frac{5 \mathrm{Tg} .}{} \\ \hline \end{array}\right.$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	4	$\begin{array}{\|c} 20 \\ (\mathrm{incl} \\ \text { dry } \\ \mathrm{btys}) \end{array}$	Channels are pre-sot crystal con. Skywave ranges of up giles tg may be obtained with correct cholce of
90 2.	62	-	Paras.	--	A 4	6-10	Xolcs. 15		-	29	Replacement set for this role has been developed.
3.	173	62		\square	$\begin{aligned} & \text { सम } \\ & \text { or } \\ & \text { PM } \end{aligned}$	2-8		${ }^{20}$		$\begin{array}{\|c\|} \hline 30 \\ \text { (incl } \\ \text { bty) } \end{array}$	Hp sat with groater range
4.	A14	-	$\begin{aligned} & \text { Cdo and Para } \\ & \text { Bn. } \end{aligned}$	-	$\begin{array}{\|c} \hline \text { AM } \\ \text { Or } \\ P I \\ \hline \end{array}$	2-8	$\begin{aligned} & \text { Volce: } \mathrm{IS} \\ & \mathrm{Tg} .50 \\ & \hline \end{aligned}$	$\begin{array}{r} 5 \\ 50 \end{array}$	18	$\begin{aligned} & 32 \\ & (\text { incl } \\ & -\operatorname{bty} y \\ & \hline \end{aligned}$	
5.	${ }^{116}$	${ }^{1510}$	Pti Set.	-	砹	2-6		$\begin{aligned} & 3-50 \\ & 300 \end{aligned}$	$\begin{aligned} & 9 \text { vojce }^{2} \mathrm{tg} \\ & \hline \end{aligned}$	$\begin{gathered} -x_{0} \\ \begin{array}{c} \text { innc1 } \\ \text { bit) } \end{array} \end{gathered}$	Long-range pti set for use in jungle and
6.	C11	-	S STGNALS Comd nets in dive and bde vas altn to virp		A	2-16	$\begin{aligned} & \text { Yo ske } \\ & \text { gg. } 50 \end{aligned}$	$\begin{aligned} & 18 \\ & 35 \end{aligned}$	$\begin{aligned} & \text { Froe } \\ & \text { tuning } \end{aligned}$	120	Basic hr sat for ? SIMRES. Transmitter only; R210 is associated rectiver ena waighs 35 lbs. Certain inks are adapted to use tel eprinters.
7.	${ }^{6} 13$	C12			$\begin{array}{\|l\|l\|} \hline \text { AI } \\ \mathrm{OR} \\ \mathrm{OL} \end{array}$	1.5-12	$\begin{aligned} & \text { Voice. } \\ & \text { Is. } 40 \end{aligned}$	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	$\begin{aligned} & \text { Frie } \\ & \text { tuning } \end{aligned}$	80	
8.	13 HP	\cdots		$\begin{gathered} \text { Some ongr } \\ \text { nets } \end{gathered}$	PLI	1.5-12	$\begin{aligned} & \text { Yoice. } \\ & \text { Tg. } 80 \end{aligned}$	$\begin{aligned} & 30 \\ & 50 \end{aligned}$	$\begin{aligned} & \text { Fres } \\ & \text { tuning } \end{aligned}$	160	
9.	014	-	$\begin{aligned} & \text { fis forma- } \\ & \text { tion rear } \\ & \text { links } \end{aligned}$	Special issue in PARELIP	育	3.18	300		$\begin{aligned} & 4 \text { spot } \\ & \text { freqs } \\ & \text { (8 Scan } \\ & \text { nels) } \end{aligned}$	80	A camercial set (Redifon CR 410) bought in small quantitís.

Sorisl	$\underset{\left(\text { Noter }_{1}\right)}{\text { Set }_{2}}$	${ }_{\text {Replac- }}^{\text {Rag }}$	$\begin{aligned} & \text { Principal } \\ & \text { Role } \end{aligned}$	Other Roies	Systam	$\left\lvert\, \begin{gathered} \text { Preq } \\ \text { coverage } \\ \left(\begin{array}{ll} \text { Hc/s }) \end{array}\right. \end{gathered}\right.$			$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Channels } \end{gathered}$	$\begin{gathered} \text { Weight } \\ \left(\begin{array}{c} \text { (1bs) } \\ \text { exci } \\ \text { Btys } \end{array}\right. \\ \hline \end{gathered}$	Femarks
							Day	H1			
$\frac{\text { (8) }}{10}$		(द)	म1-00t	Spaciay ${ }^{\text {(s) }}$	(1)	$\frac{(8)}{\text { (1) }}$	(h) ${ }^{\text {(h) }}$	(1)	(])		Ca ${ }^{\text {c }}$
				$\underset{\substack{\text { Spacial issue } \\ \text { for strat } \\ \text { res. }}}{ }$			50 ground wave	$\begin{aligned} & 40 \\ & \text { ground- } \\ & \text { wrye } \\ & 300 \end{aligned}$	$\begin{aligned} & \mathrm{KCc} / \mathrm{s} \\ & \text { channel } \\ & \text { spacing } \end{aligned}$		commercial set (colin $\mathrm{yc} 1 \mathrm{CO})$ bought in smali quantities.
11.	DII	53	$\begin{aligned} & \text { Forgition } \\ & \text { forin nets } \\ & \text { domv to } \\ & \text { div } \end{aligned}$	-	A 1	2.1-20	$\|$Vozag. Tg. 100	$\begin{gathered} 25 / 80 \\ 60 \end{gathered}$	$\begin{aligned} & \text { Free } \\ & \text { tuning } \end{aligned}$	500	Carried in trucks litan. Skywave ranges up to 1,500 mintennas. Teleprinters can
12.	D13	-	ESIGNAS. Argy regig in rear innk fromid to couch	-	AK	2.1-22	\| Yoice. $50 / 100$	$\begin{gathered} 40780 \\ 80 \end{gathered}$	Frae tuning	$\begin{gathered} \text { Cx } 17 \\ \text { ton } \\ \text { vehs } \end{gathered}$	
	tas ${ }^{\text {AmPa }}$	${ }_{88}{ }^{\text {riap }}$			\% $\mathrm{Fl}{ }^{\text {pag }}$	${ }^{\text {ge }}$ (47-55	$1{ }^{1}$	$1 \pm$		$\begin{gathered} 8 \\ \left(\begin{array}{c} 8 \mathrm{ncl} \\ \text { dry } \\ \mathrm{btys}) \end{array}\right. \end{gathered}$	
14.	441	31	$\frac{\mathrm{nit}}{\mathrm{~F}} / \text { coy }$		FIE	38-55	${ }^{3}$	3 3	170	$\begin{aligned} & 82 \\ & \left(\begin{array}{l} \text { inyl } \\ \text { dry } \\ \text { bys } \end{array}\right. \end{aligned}$	Votice only. Facilitios for remote op and remote antenra. Range can be increased using elevated tennas.
15.	${ }^{\text {A4 }}$	38	$\frac{\text { dicy }}{\text { set }}$ Poors	-	FIM	26-38	3^{3}	3	120	$\begin{aligned} & \begin{array}{c} \text { (incl } \\ \text { dry } \\ \text { bus } \end{array} \end{aligned}$	dientical to a 41 apart from freq coverage.
16.	4.43	-			$\mathrm{Al}^{\text {a }}$	$\frac{2 y-R}{244-300}$	$\begin{aligned} & 45 \text { at } 5,000 \\ & \text { ft optical } \end{aligned}$	$\begin{aligned} & \text { Hitt18 } \\ & \text { diffe } \\ & \text { rence } \end{aligned}$	$\frac{\left(\begin{array}{c} 6 \\ \text { sret } \\ \text { set } \end{array}\right)}{(2)}$		

Serial	$\begin{gathered} \text { Set } \\ \left(\operatorname{Not}_{1}\right) \end{gathered}$	$\begin{gathered} \text { Replac- } \\ \text { ing } \end{gathered}$	$\begin{gathered} \text { Princt prl } \\ \text { Role } \end{gathered}$	- Other Roles	System	$\begin{gathered} \text { 7raq } \\ -0 v e r a g e \\ (\underline{y c} / \mathrm{s}) \end{gathered}$	$\begin{gathered} \text { Hange (miles) } \\ \left(\begin{array}{l} \text { (mote } \end{array}\right) \end{gathered}$		Numberofonanels	$\begin{gathered} \text { Welght } \\ (1 b s) \\ \text { exci } \\ \text { Btys } \end{gathered}$	Remarks
							Day	ni			
(8)	(b)	(c)	(d)	(6)	(f)	- (9)	(b)	(1)	-(1)		(I)
17.	B47	$\begin{aligned} & 8 B \quad A F V \\ & 31 \\ & \hline \end{aligned}$	RAC. Arnd and armd car regts for coms with inf		Fit	38-56	5/7	$5 / 7$	175	30	Vorce only. Ground to air range $10 / 20$ miles.
18.	B48	38	Arey. OP	Anty 11 r	F	26-38	$5 / 7$	577	120	30	Identical to b47 apart from
19.	041	-	$\begin{aligned} & \text { KSIGudis. } \\ & \text { Bde gig } \\ & \text { sqns, div } \\ & \text { and corps } \\ & \text { sig rogts. } \\ & \text { RR sqpt } \end{aligned}$	$\frac{\text { R SHNALS }}{\text { Somizarea }}$	F留	50-100	Namp optical	$\begin{aligned} & \text { Near } \\ & \text { optical } \end{aligned}$	$\begin{aligned} & \text { simul- } \\ & \text { tancous } \\ & \text { in con- } \\ & \text { junction } \\ & \text { with } \\ & \text { carr } \end{aligned}$	240	freg coverages .
20.	C42	-	B SlCNALS, Formation comd nets, All Arus Unit comd nets.	$\frac{\mathrm{frisg}}{\text { Comas. }}$	P4	36-60	10/15	10715	$\frac{80 p t}{240}$	90	Vorce only. Blevated to give range of 25 mlles when static. Range can be much increased by use of rebroadcast. Tg adaptor aval.
21.	845	-	$\begin{aligned} & \text { B. SIGNRLS. } \\ & \text { Arty comd } \\ & \text { nets. Regts } \\ & \text { Arty. Regt } \end{aligned}$	-	17	23-38	$10 / 15$	$10 / 15$	150		Voice only. Similar to C42 but lower freq range. Facilitios for remote op and remota antionas. Can work automatic rebroadcast with B48.
22.	C48	$-$		-	A ${ }^{\text {P }}$	2	$\begin{aligned} & \text { Line of } \\ & \text { sight } \end{aligned}$	$\begin{aligned} & \text { Inne } \\ & \text { of } \\ & \text { sight } \end{aligned}$	$\begin{aligned} & \text { Fres } \\ & \text { tuning } \\ & \text { 100 } \mathrm{Ko} / \mathrm{s} \\ & \text { spacing } \\ & \hline \end{aligned}$	80	Baged on US ac set AN7 ARC-52 In a more robust mounting for veh use. Limited issue only for BaOR.
23.	050	-		-	F	$225-400$	25	25	12	380	
24.	670	\cdots	$\begin{aligned} & \text { Trunk RR } \\ & \text { corps to } \\ & \text { diy } \end{aligned}$	-	F4	610-960	Z5	25		400	

Serial	Set (Note 1)	$\begin{gathered} \text { Replac- } \\ \text { ing } \end{gathered}$	$\begin{gathered} \text { Principal } \\ \text { Role } \end{gathered}$	Other Roles	System	$\left\lvert\, \begin{gathered} \text { Freq } \\ \text { Covergese } \\ \text { (Kc/s) } \end{gathered}\right.$	$\begin{gathered} \text { Kange (miles) } \\ \text { (fotem) } \end{gathered}$		$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { Channels } \end{aligned}$	$\left\|\begin{array}{c} \text { Weight } \\ (10 s) \\ \text { excl } \\ \text { Btys } \end{array}\right\|$	Remarks
							Day	Ni			
(a)	(b)	(c)	- (d)	(e)	(f)	(g)	(b)	(i)	$\frac{(3)}{280}$	(k)	(1)
25.	ARC 44	-	air to ground in unit hels	,	Fh	24-51.9	50 miles max. Depends on ac height	$\begin{aligned} & \text { No } \\ & \hline \text { change } \end{aligned}$	280	25	
	B70	-	$\begin{aligned} & \text { R SIGMLS } \\ & \text { RR Ieeder } \\ & \text { Circuits. } \end{aligned}$	-	FM	$\begin{aligned} & 4,550- \\ & 4,830 \end{aligned}$	sight Line of sight	Line or si ght	$$	120	May accept up to le simultanoous channels.

Notes: (these apply to pages 324, 325, 326 and 327

[^0]FREO OVBRLAP OF VHF RADIO SEIS

Notes:

TBE BPHONE

Sertal	Type	Detail
1.	P	The normal mil desk telephone.
2.	L	The lineman's telephone.
3.	J	Standard Id telephone. Tropioslised improved version of telaphone L.
4.	H	Sound powered, no btys.
5.	Future Development Telophone Hand Sound Powered No 1	Sound powered, no btys. Under consideration for gen adoption within the inf bn. Range much greater than telephone H .
6.	Gen Purpose Telephone Handset	To replace all existing types except telephone F.

SWBDS

Sarial	Level Used	Prasent Ropt		Future Rapt
		Smbd	Telephone	Automatie Swbd
1.	$\mathrm{Ha} / \mathrm{regt}$	10 11ne	J, F	
2.	Bde	40 line F and F and 10 Inne magnato	J, F	40/160
3.	Div	80 ling	J, F	40/160 line $\times 2$
4.	Corps	120 1ing	J, P	40/160 line $\times 3$
5.	Army gp	120 line	F	a. Trunk GB20 $\times 4$ b. Satellite $40 / 160 \times 3$

PD CABLES
(TIMES OR CONST ARE FOR GOOD CONDITIONS, IN OPEN COUNTRY, IN DAYLIGHT)

Serial	Type of Cable	Speech Range in Niles (mioaded)	Det for Laying	Speed of Const	Renariss
1.	Cable, electric, D! 0 ($26 \mathrm{lbs} / \frac{1}{4}$ mile cofl)	10	a. 1 or 2 men on foot. b. 8 linemen, $2 \times \frac{1}{6}$-ton and tirs, $1 \times$ i-ton trick.	2 mph 4 mph	found in dispenser colls like a bell of string. This allows fast laying and laying by ac or hel.
2.	Cable, electric, fd quad	20	10-20 linemen 1×4-ton and tl r 2×1-ton trucks 1×3-ton truck (This det is for poled route and can be reduced when cable is laid on the ground)	Poled $3 / 4 \mathrm{mph}$ Ground 2 mph	Used for RR tails and heavier types of routes in rear of div. Obsolescent.
3.	Cable, electric, cacr quad, Type P lk III (140 lbs/a mile drum)	29	Similar to Serial 2		Primarily for use with multi-channel systems. Lengths ara joined by couplers supplied with each cable coll. Loading pots to give increased range can be inserted between couplers.
4.	```guture Developments Cable, eloctric, lt we1ght, quad (55 lbs/t mile coll)```	19	Similar to Serial 2		Replaces cable at Serial 2 in its gen purposes employment and as RR te.ils. Lighter than Serial 2.
5.	cable, alectric, 10 pair (plastic) ($150 \mathrm{lbs} / \mathrm{k}$ mile drum)	24	Similar to Serial 2		Cable for ra use, primarily for local distr and inter-connection of echs of a gQ:

[^0]: With HF sets, greater ranges

 Only sets in the same freq band and using the same method of modulation can inter-op.
 Range depends on type of antenna used. Figures given are those for vertical rod of average height.
 be obtained by using horizontal wire antennae.
 ふ \mathfrak{m}

