

REPORT ON THE EMC TESTING

FOR

360 VISION TECHNOLOGY LTD

ON

PREDATOR CCTV CAMERA, 24VAC LINEAR PSU AND 12VDC VISION RS485 DISTRIBUTION UNIT

DOCUMENT NO. TRA-005584-35-00A

Report Number:

TRA-005584-35-00A

Issue:

1

Copy Number:

2 (pdf)

REPORT ON THE EMC TESTING OF A
360 Vision Technology Ltd
Predator CCTV camera, 24Vac Linear PSU and 12Vdc Vision RS485 Distribution unit
WITH RESPECT TO SPECIFICATION
EN50130-4:1995 +A1:1998 +A2:2003, EN55022:2006 +A1:2007, EN55024:1998 +A1:2001
+A2:2003 and EN61000-6-3:2007

TEST DATE: 26 April - 9 May 2011

Tested By:

Digitally signed by DN: CN = C = GB, OU = TRaC Global Reason: I am the author of this document Date: 2011.08.24 13:30:17 +01100'

Digitally signed by C = GB, O = TRaC Global, OU = EMC Reason: I am approving this document Date: 2011.09.15 16:42:49 +01100'

Approved By:

......19 August 2011......

Distribution:

Date:

Copy 1: TRaC Global Ltd.

Copy 2: 360 Vision Technology Ltd

Disclaimers

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

Summary

TEST REPORT NUMBER:

TRA-005584-35-00A

PURPOSE OF TEST:

Electromagnetic Compatibility - Emissions

and Immunity

TEST SPECIFICATION:

EN50130-4:1995 +A1:1998 +A2:2003. EN55022:2006 +A1:2007, EN55024:1998 +A1:2001 +A2:2003 and EN61000-6-3:2007

EQUIPMENT UNDER TEST (EUT):

Predator CCTV camera, 24Vac Linear PSU and 12Vdc Vision RS485 Distribution unit

EUT SERIAL NUMBER:

Predator camera - 1104212-5331

RS485 distribution unit - 1012416-3504

TEST RESULT:

Measured As Compliant

Given any modifications and with reference to any measurement uncertainty values listed in the relevant

sections of this report.

MANUFACTURER/AGENT:

360 Vision Technology Ltd

ADDRESS:

Unit 7

Seymour Court Manor Park Runcorn

Cheshire WA7 1SY

CLIENT CONTACT:

ORDER NUMBER:

0000011080

TEST DATE:

26 April - 9 May 2011

TESTED BY:

TRaC Global Ltd.

2 Contents

1		Sum	nmary	3
2		Con	tents	4
3		Intro	duction	6
4		Norr	native References	7
5		Equi	pment Under Test	8
	5.1		EUT Identification	8
	5.2	2	System Equipment	8
	5.3	3	EUT Mode of Operation	. 8
	Ę	5.3.1	Emissions	. 8
	5	5.3.2	Immunity	. 8
	5.4	×	EUT Monitoring	. 8
	5.5	5	EUT Description	. 8
6	E	Block	Diagram	. 9
7	٦	Test :	Standard Selection	10
	7.1		Product Standard	10
	7.2	!	Basic Test Standard Selection	10
8	5	Speci	fication Based Performance Criteria	11
	8.1		Manufacturer Based Performance Criteria	12
9	Е	Electr	ostatic Discharge as per EN61000-4-2:2009	13
	9.1		General	13
	9.2		ESD Test Parameters	13
	9.3		ESD Discharge Levels	13
	9.4		EUT Test Results	14
	9.5		Test Equipment	14
1()	Radi	ated Immunity as per EN61000-4-3:2006 + A2:2010	15
	10.	1	General	15
	10.	2	Radiated Immunity Test Parameters	15
	10.	3	Radiated Immunity Test Frequencies	16
	10.	4	EUT Test Results	16
	10.	5	Test Equipment	17
11		Elect	trical Fast Transients as per EN61000-4-4:2004 +A1:2010	18
	11.	1	General	18
	11.:	2	Fast Burst Transient Test Parameters	18
	11.	3	Fast Transient Test Levels	18
	11.	4	EUT Test Results	19
	11.	5	Test Equipment	19
12	2	Volta	ge Surge Testing as per EN61000-4-5:2006	20
	12.	1	General	20
	12.	2	Voltage Surge Test Parameters	20

12	3	Voltage Surge Test Levels	20
12	.4	EUT Test Results	21
12	5	Test Equipment	21
13	Cond	ducted RF Immunity as Per EN61000-4-6:2009	22
13	.1	General	22
13	.2	Conducted Immunity Test Parameters	22
13	.3	Conducted RF Immunity Test Frequencies	23
13	.4	EUT Test Results	24
13	.5	Test Equipment	25
14	Volta	age Dips and Short Interruptions as per EN61000-4-11:2004	26
14	.1	General	26
14	.2	Voltage Dips Test Levels	26
14	.3	EUT Test Results	27
14	.4	Test Equipment	27
15	Radi	ated Emissions as per EN55022:2006 + A1:2007 – Class B	28
15	.1	General	28
15	.2	Radiated Emission Test Parameters	28
15	.3	Test Equipment	29
15	.4	EUT Test Results	30
15	.5	EUT Test Results	31
16	Cond	ducted Emissions as per EN55022:2006 + A1:2007 – Class B	31
16	.1	General	31
16	.2	Conducted Emission Test Parameters.	31
16	.3	Test Equipment	31
16	.4	EUT Test Results	32
17	EMC	Modifications	34
18	Conc	clusion	35
19	Meas	surement Uncertainty	36
20	ΔΡΡΙ	ENDIX A _ PHOTOGRAPHS	30

3 Introduction

This report TRA-005584-35-00A presents the results of the EMC testing on a 360 Vision Technology Ltd, Predator CCTV camera, 24Vac Linear PSU and 12Vdc Vision RS485 Distribution unit to specification EN50130-4:1995 +A1:1998 +A2:2003, EN55022:2006 +A1:2007, EN55024:1998 +A1:2001 +A2:2003 and EN61000-6-3:2007.

The testing was carried out for 360 Vision Technology Ltd by TRaC Global Ltd., an independent test house, at their EMC test facility located at Skelmersdale, Lancashire, England.

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

It is TRaC Global Ltd. policy to always use the latest version of any applicable base test standards. Where a product specification calls up a superseded dated revision or an undated basic standard, the latest version will be used. This may be a deviation to the product standard if dated references have been used.

Throughout this report EUT denotes equipment under test.

4 Normative References

- EN61000-4-2:1995 +A1:1998 +A2:2001 EMC Immunity, Electrostatic Discharge
- EN61000-4-2:2009 EMC Immunity, Electrostatic Discharge
- EN61000-4-3:2002 +A1:2002 Electromagnetic compatibility (EMC). Testing and measurement techniques. Radiated, radio-frequency, electromagnetic field immunity test
- EN61000-4-3:2006 +A2:2010 Electromagnetic compatibility (EMC). Testing and measurement techniques. Radiated, radio-frequency, electromagnetic field immunity test
- EN61000-4-4:2004 +A1:2010 Electromagnetic compatibility (EMC). Testing and measurement techniques. Electrical fast transient/burst immunity test
- EN61000-4-5:2006 Electromagnetic compatibility (EMC). Testing and measurement techniques. Surge immunity test
- EN61000-4-6: 2007 Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity to conducted disturbances, induced by radio-frequency fields
- EN61000-4-6:2009 Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity to conducted disturbances, induced by radio-frequency fields
- EN61000-4-11:2004 Electromagnetic compatibility (EMC). Testing and measurement techniques. Voltage Dips and Interruptions and Voltage Variations
- EN61000-4-8:1994 +A1:2001 Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity Power Frequency Magnetic Field
- EN61000-4-8:2010* Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity Power Frequency Magnetic Field
- EN61000-4-9:1994 +A1:2001 Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity to Pulse Magnetic Field
- EN61000-4-10:1994* +A1:2001* Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity to Damped Oscillatory Magnetic Field
- EN61000-4-12:1995 Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity to Oscillatory Waves
- EN61000-4-12:2006* Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity to Oscillatory Waves
- EN61000-4-16:1998* +A1:2004* Electromagnetic compatibility (EMC). Testing and measurement techniques. Immunity to Conducted Common Mode Disturbances
- EN55011:2007 +A2:2007 Industrial, scientific and medical (ISM) radio frequency equipment Radio disturbance characteristics – Limits and methods of measurement
- EN55011:2009 +A1:2010 Industrial, scientific and medical (ISM) radio frequency equipment Radio disturbance characteristics – Limits and methods of measurement
- EN55022:2006 +A1:2007 Information technology equipment Radio disturbance characteristics Limits and methods of measurement
- EN55024:1998 +A1:2001, +A2:2003 Information technology equipment Immunity Characteristics Limits and methods of measurement
- EN55024:2010 Information technology equipment Immunity Characteristics Limits and methods of measurement
- EN55016-1-4:2004* Specification for radio disturbance and immunity measuring apparatus and methods
 – Radiated Disturbances
- EN55016-1-4:2007* +A1:2008* +A2:2009* Specification for radio disturbance and immunity measuring apparatus and methods – Radiated Disturbances
- EN55016-1-4:2010* Specification for radio disturbance and immunity measuring apparatus and methods
 – Radiated Disturbances
- EN55016-1-2:2004* +A2:2006* Specification for radio disturbance and immunity measuring apparatus and methods – Conducted disturbances
- EN61000-3-2:2006 +A2:2009 Limits for Harmonic Current Emissions (Equipment input current up to and including 16A/phase)
- EN61000-3-3:2008 Limitation of voltage changes, voltage fluctuations and flicker in the public supply network
- EN61000-3-11:2000* Electromagnetic compatibility (EMC) Part 3-11: Limits Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems - Equipment with rated current ≤ 75 A and subject to conditional connection
- EN61000-3-12:2005* Electromagnetic compatibility (EMC) Part 3-12: Limits Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and ≤ 75 A per phase
- EN61000-6-3:2007 Electromagnetic compatibility (EMC) Part 6-3: Generic standards Emission standard for residential, commercial and light industrial environments
- EN50130-4:1995 +A1:1998 +A2:2003 Alarm systems Part 4: Electromagnetic compatibility Product family standard: Immunity requirements for components of fire, intruder and social alarm systems
- * indicates a specification or standard or specific amendment that is not listed on the TRaC Global Ltd. UKAS scope of accreditation.

5 Equipment Under Test

5.1 EUT Identification

- Name: Predator CCTV camera, 24Vac Linear PSU and 12Vdc Vision RS485 Distribution unit
- Serial Number: Predator camera 1104212-5331 RS485 distribution unit - 1012416-3504
- Model Number: Predator camera Predator
 24Vac PSU Predator PSU
 RS485 distribution unit Vision RS485 4 camera distribution unit
- Software Revision: Predator camera 130411_1703.ELF
- Build Level / Revision Number: Not Applicable

5.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Support Equipment 1 Model; Vision keyboard Type; Vision keyboard Serial number: 1104421-5458

Support Equipment 2 Model; TM-1500E (CV) Type; JVC Monitor Serial number: 13037081

5.3 EUT Mode of Operation

5.3.1 Emissions

During the emissions testing the predator camera was in a tour mode which moves it in two planes of movement. While in the tour mode the camera had its wiper running and IR lights on. The distribution unit was distributing data between the camera and support equipment 1.

5.3.2 Immunity

During the immunity testing the predator camera was in a tour mode which moves it in two planes of movement. While in the tour mode the camera had its wiper running and IR lights on. The distribution unit was distributing data between the camera and support equipment 1

5.4 EUT Monitoring

During the immunity testing the camera was monitored visually for movement through its axis, wiper movement and continuous IR lamp operation. Support equipment 2 was also viewrd for any degradation of live feed picture. The communication LED's on the distribution unit was monitored for continuous activity.

5.5 EUT Description

The EUT is a CCTV camera system. With a multi point distribution unit used to control up to four separate cameras.

6 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified.

Cable index

- 1. Camera power/comms/video cable, multi-core, unshielded, length 3m
- 2. Communication cable, Twisted pair, unshielded, length 1.7m
- 3. Video cable, BNC, shielded, length 3m
- 4. Mains power cable, 3 core, unshielded, length 2m
- 5. DC power cable, 2 core, unshielded, length 2m

7 Test Standard Selection

7.1 Product Standard

The following product standard was used as the basis of the test levels required and has been deemed the most appropriate product standard to apply to the Predator CCTV camera, 24Vac Linear PSU and 12Vdc Vision RS485 Distribution unit, or has been requested by the manufacturer:

EN61000-6-3:2007 – Electromagnetic compatibility (EMC) – Part 6-3: Generic standards – Emission standard for residential, commercial and light industrial environments

EN50130-4:1995 +A1:1998 +A2:2003 – Alarm systems – Part 4: Electromagnetic compatibility – Product family standard: Immunity requirements for components of fire, intruder and social alarm systems

EN55022:2006 +A1:2007 Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement

EN55024:1998 +A1:2001, +A2:2003 Information technology equipment – Immunity Characteristics - Limits and methods of measurement

7.2 Basic Test Standard Selection

Basic Test Standard	Appl	icable	Notes
EN61000-4-2:2009 – Electrostatic Discharge	\boxtimes		
EN61000-4-3:2006 +A2:2010 – Radiated Immunity		⊠	
EN61000-4-4:2004 +A1:2010 – Electrical Fast Transients		⊠	,
EN61000-4-5:2006 – Voltage Surge		⊠	
EN61000-4-6:2009 – Conducted Radio Frequency Immunity		\boxtimes	
EN61000-4-8:2010 – Power Frequency Magnetic Field]		Note 3&4
EN61000-4-9:1994 +A1:2001 – Pulse Magnetic Field	[Note 1
EN61000-4-10:1994 +A1:2001 – Damped Oscillatory Magnetic Fields			Note 1&4
EN61000-4-11:2004 – Voltage Dips and Short Interruptions			
	Class A	Class B	
EN55022:2006 +A1:2007 – Radiated Electromagnetic Emissions		\boxtimes	
EN55022:2006 +A1:2007 – Conducted Electromagnetic Emissions		\boxtimes	
EN55011:2009 +A1:2010 – Radiated Electromagnetic Emissions			
EN55011:2009 +A1:2010 - Conducted Electromagnetic Emissions			
EN61000-3-2:2006 +A2:2009 – Mains Harmonics			Note 2
EN61000-3-3:2008 – Voltage Fluctuations and Flicker			Note 2

Notes

- [1] Not applicable, not required in specification EN50130-4:1995 +A1:1998 +A2:2003, EN55022:2006 +A1:2007, EN55024:1998 +A1:2001 +A2:2003 and EN61000-6-3:2007.
- [2] Not applicable, EUT consumes <75W and is unlikely to cause flicker.
- [3] Not applicable, EUT contains no devices susceptible to magnetic fields.
- [4] Tests marked with an asterisk* in the Normative References Section indicate a dated specification or specific amendment which falls outside the laboratories UKAS scope of accreditation, but are within the laboratories scope of competence. However, TRaC are UKAS accredited for the superseded version of the specification.

8 Specification Based Performance Criteria

EN55024 Performance Criteria

The test results may be classified on the basis of the operating conditions and the functional specifications of the equipment under test, according to the following performance criteria:

- A. The apparatus shall continue to operate as intended. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. In some cases the performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and what the user may reasonably expect from the apparatus if used as intended.
- **C.** Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls.

EN50130-4 Performance Criteria

Performance criteria for electrostatic discharge, Fast burst transients, Voltage surges and voltage dips and interrupts is detailed below;

There shall be no damage, malfunction pt change of status due to the conditioning. Flickering of an indicator during the application of the discharges is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change.

Performance criteria for Radiated Immunity is detailed below;

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of and indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at a field strength of 3V/m.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of the picture is allowed at 10V/m, providing:

- a) there is no permanent damage or change to the EUT (eg no corruption of memory or changes to programmable settings etc)
- b) at 3V/m, any deterioration of the picture is so minor that the system could still be used
- c) there is no observable deterioration of the picture at 1V/m.

Performance criteria for conducted immunity is detailed below:

There shall be no damage, malfunction or change of status due to the conditioning. Flickering of an indicator during the conditioning is permissible, providing that there is no residual change in the EUT or any change in outputs, which could be interpreted by associated equipment as a change, and no such flickering of indicators occurs at $U_0 = 130 \text{ dB}_{\mu}V$.

For components of CCTV systems, where the status is monitored by observing the TV picture, then deterioration of picture is allowed at $U_0 = 140 \text{ dB}\mu\text{V}$, providing:

- a) there is no permanent damage or change to the EUT (eg no corruption of memory or changes to programmable settings etc)
- b) at $U_0 = 130 \text{ dB}\mu\text{V}$, any deterioration of the picture is mo minor that the system could still be used
- c) there is no observable deterioration of the picture at $U_0 = 120 \text{ dB}\mu\text{V}$

8.1 Manufacturer Based Performance Criteria

The manufacturer has not supplied any specific criteria and therefore any performance loss noted during testing will be given in the relevant test result section.

9 Electrostatic Discharge as per EN61000-4-2:2009

9.1 General

This test simulates human body static discharge that equipment may be subject to. The test also includes discharges that may occur in the vicinity of the equipment thereby setting up a rapidly fluctuating short term electric field.

Two types of discharge are used – Air and Contact. Air discharges are applied to points that are classified as insulating surfaces and contact discharges are applied directly with no air interface on to conducting metallic surfaces of the EUT.

Where an EUT is defined as a class II apparatus then contact points will be connected to ground using two $470k\Omega$ resistors to provide a leakage path to ground so as to prevent charge build up.

The test setup used complies with all the dimension requirements set out in EN61000-4-2:2009. The discharge generator is UKAS calibrated as such.

9.2 ESD Test Parameters

Energy Storage Capacitor	150pF
Discharge Resistance	330Ω
Output Voltage	Up to 8kV - Contact Discharge
	Up to 15kV – Air Discharge
Discharge Rise Time	0.7 – 1ns
Deviation From Basic Test Standard	None

Testing will only be carried out (unless otherwise stated so in this section) if the following environmental conditions are met:

Ambient temperature in the range 15°C - 35°C Relative humidity in the range 30% - 60% Atmospheric pressure in the range 860mbar – 1060mbar

9.3 ESD Discharge Levels

The following test voltages were used for contact and air discharge:

Air Discharge	±2kV	\bowtie	Contact	±2kV	\bowtie
	±4kV	\boxtimes	Discharge	±4kV	\boxtimes
	±6kV		· ·	±6kV	Ħ
	±8kV	\boxtimes		±8kV	
	±15kV				8
			ch polarity and at each tes		
			ch point with a minimum of		as per
EN55024:199	98 +A1:2001	, +A2:200	3 section 4.2.1(a) were ap	plied.	

9.4 EUT Test Results

For pass/fail criteria definitions please see section 8 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Air Discharge:

Test levels applied are identified in the previous section.

	EUT Test Points	Performance Criteria Achieved	Performance Criteria Required
1	Enclosure of liner PSU	A	В
2	Enclosure of distribution unit PSU	A	В
3	Camera lens cover	A	В
4	Light lens covers	A	В

Contact Discharge:

Test Levels applied are identified in the previous section.

	EUT Test Points	Performance Criteria Achieved	Performance Criteria Required
1	Horizontal Coupling Plane (HCP)	A	В
2	Vertical Coupling Plane (VCP)	Α	В
3	Enclosure of camera (base, arms, top, light enclosure, camera enclosure)	А	В
4	Enclosure of distribution unit	Α	В

Note;

The equipment met the performance requirements of EN50130-4 as defined in section 8.

9.5 Test Equipment

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
ESD Gun	Schaffner	NSG435	258	UH01	
ESD Gun	Schaffner	NSG435	1622	UH85	
Temp/Humid/Barometer	RS Comp	None	None	UH110	
Temp/Humid/Barometer	Innovative	888R05	None	UH391	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH392	
ESD Gun	Schaffner	NSG432-15	838	L152	
ESD Plug-In	Schaffner	402-568	9043	L212	
ESD Gun	Schaffner	NSG435	1780	L327	
ESD Gun	Schaffner	NSG438	620	L697	

Report Number: TRA-005584-35-00A

10 Radiated Immunity as per EN61000-4-3:2006 + A2:2010

10.1 General

This test simulates the threat imposed by operating the equipment in the vicinity of intentional transmitters both fixed and mobile.

The specification calls up a uniform field test area, TRaC Global Ltd meet the field uniformity requirements set out in EN61000-4-3:2006 +A2:2010 in the frequency range 80MHz to 2.7GHz.

A computer controlled pre-calibrated level is applied to the antenna and the frequency is swept across the range of test at a predefined step size and time.

In order to achieve a test level confidence of 95% the actual field strength used during testing is raised by the level set out in the uncertainty budget for this test. The actual field strength reported in this section does not include this factor.

The test setup used complies with all the dimension requirements set out in EN61000-4-3:2006 +A2:2010.

10.2 Radiated Immunity Test Parameters

Frequency Range	 ⋈ 80MHz – 1GHz ⋈ 1GHz – 2.7GHz ⋈ 1.4GHz – 2GHz (3V/m) ⋈ 2GHz – 2.7GHz (1V/m)
Modulation type	
Amplitude Modulation Frequency	
Dwell Time per momentary frequency	☐ 1second ☐ 2seconds ☑ 3seconds ☐ 4seconds
Test Voltage Note: See frequency range above for any additional information on test levels applied in each range.	☐ 1V/m ☐ 3V/m ☑ 10V/m ☐ 20V/m
Step Increment	1% of the momentary frequency
Antenna Polarisations	Horizontal and Vertical
Number of EUT Faces Tested	⊠ 4 Faces
Deviation from Basic Test Standard	None

10.3 Radiated Immunity Test Frequencies

A full list of frequency points is given here in MHz, the exact frequencies used will be dependant upon the test range selected in the table above.

80.000	125.185	195.891	306.532	479.664	750.584	1625.357	2539.469
80.800	126.437	197.850	309.597	484.461	758.089	1641.610	2564.864
81.608	127.701	199.828	312.693	489.305	765.670	1658.026	2590.513
82.424	128.978	201.826	315.820	494.198	773.327	1674.606	2616.418
83.248	130.268	203.845	318.978	499.140	781.060	1691.353	2642.582
84.081	131.571	205.883	322.168	504.132	788.871	1708.266	2669.008
84.922	132.886	207.942	325.390	509.173	796.760	1725.349	2695.698
85.771	134.215	210.021	328.644	514.265	804.727	1742.602	2700.000
86.629	135.557	212.121	331.930	519.408	812.775	1760.028	2000.000
87.495	136.913	214.243	335.249	524.602	820.902	1777.629	2020.000
88.370	138.282	216.385	338.602	529.848	829.111	1795.405	2040.200
89.253	139.665	218.549	341.988	535.146	837.402	1813.359	2060.602
90.146	141.061	220.734	345.408	540.498	845.776	1831.492	2081.208
91.047	142.472	222.942	348.862	545.903	854.234	1849.807	2102.020
91.958	143.897	225.171	352.350	551.362	862.777	1868.305	2123.040
92.878	145.336	227.423	355.874	556.875	871.404	1886.988	2144.271
93.806	146.789	229.697	359.433	562.444	880.118	1905.858	2165.713
94.744	148.257	231.994	363.027	568.068	888.920	1924.917	2187.371
95.692	149.740	234.314	366.657	573.749	897.809	1944.166	2209.244
96.649	151.237	236.657	370.324	579.487	906.787	1963.608	2231.337
97.615	152.749	239.024	374.027	585.281	915.855	1983.244	2253.650
98.591	154.277	241.414	377.767	591.134	925.013	2000.000	2276.187
99.577	155.820	243.828	381.545	597.046	934.263	2020.000	2298.948
100.573	157.378	246.266	385.360	603.016	943.606	2040.200	2321.938
101.579	158.952	248.729	389.214	609.046	953.042	2060.602	2345.157
102.595	160.541	251.216	393.106	615.137	962.572	2081.208	2368.609
103.621	162.146	253.729	397.037	621.288	972.198	2102.020	2392.295
104.657	163.768	256.266	401.008	627.501	981.920	2123.040	2416.218
105.703	165.406	258.828	405.018	633.776	991.739	2144.271	2440.380
106.760	167.060	261.417	409.068	640.114	1000.000	2165.713	2464.784
107.828	168.730	264.031	413.158	646.515	1400.000	2187.371	2489.432
108.906	170.418	266.671	417.290	652.980	1414.000	2209.244	2514.326
109.995	172.122	269.338	421.463	659.510	1428.140	2231.337	2539.469
111.095	173.843	272.031	425.678	666.105	1442.421	2253.650	2564.864
112.206	175.581	274.752	429.934	672.766	1456.846	2276.187	2590.513
113.328	177.337	277.499	434.234	679.494	1471.414	2298.948	2616.418
114.462	179.111	280.274	438.576	686.289	1486.128	2321.938	2642.582
115.606	180.902	283.077	442.962	693.151	1500.989	2345.157	2669.008
116.762	182.711	285.908	447.391	700.083	1515.999	2368.609	2695.698
117.930	184.538	288.767	451.865	707.084	1531.159	2392.295	2700.000
119.109	186.383	291.654	456.384	714.155	1546.471	2416.218	
120.300	188.247	294.571	460.948	721.296	1561.936	2440.380	
121.503	190.129	297.517	465.557	728.509	1577.555	2464.784	
122.718	192.031	300.492	470.213	735.794	1593.331	2489.432	
123.945	193.951	303.497	474.915	743.152	1609.264	2514.326	

Additional spot frequencies due to equipment related harmonics / declared EUT sensitive frequencies: None

10.4 EUT Test Results

For pass/fail criteria definitions please see section 8 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

Performance Criteria Achieved	Performance Criteria Required
A	A

Note:

The equipment met the performance requirements of EN50130-4 as defined in section 8.

10.5 Test Equipment

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
Signal Generator	Marconi	2022D	119164/030	UH02	
Bi-Cone Elements	Schwarzbeck	VHBA 9123	None	UH29	
Antenna	AR	15342	AT1080	UH65	
Signal Generator	Marconi	2022D	119215/058	UH75	
Signal Generator	Marconi	2022D	119224/035	UH89	
Directional Coupler	AR	DC3010	17472	UH94	
Directional Coupler	AR	DC6180	17671	UH95	
100W Amplifier	AR	100W1000M1	18816	UH103	
Signal Generator	Marconi	2023	112224/040	UH105	
Anechoic Chamber	EMV	MAC 4	MAC4-1008	UH106	
Temp/Humid/Barometer	RS Comp	None	None	UH110	
RF Sensor	TRaC	None	None	UH118	
Isotropic Electric Field Probe	AR	FP6001	302515	UH164	
Directional Coupler	AR	DC7144	303761	UH165	\boxtimes
1-4GHZ Amplifier	AR	50S1G4A	303825	UH167	
250W Amplifier	AR	250W1000A	303347	UH168	
Horn Antenna	AR	AT4002A	303850	UH169	
150W Amplifier	AR	150L	10005	UH174	
RF Sensor	Pro Hunter	None	None	UH258	
RF Power Meter	Rhode & Schwarz	NRP	100511	UH259	
RF Power Sensor	Rhode & Schwarz	NRP-Z11	100002	UH260	
RF Power Meter	Rhode & Schwarz	NRP	100001	UH266	
RF Power Sensor	Rhode & Schwarz	NRP-Z11	100004	UH267	
Signal Generator	Rhode & Schwarz	SML03	102268	UH297	
RF Sensor	TRaC	None	None	UH382	
RF Chamber 1	Rainford EMC	31241	472-CH1-001	UH387	
RF Chamber 2	Rainford EMC	31144	472-CH2-001	UH388	
Immunity Chamber 3	Rainford EMC	31781	472-CH3-001	UH389	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH391	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH392	

11 Electrical Fast Transients as per EN61000-4-4:2004 +A1:2010

11.1 General

Pulse Rise Time

This test applies very fast low energy transients on to the specific line under test. This simulates inductive load switching either directly coupled from equipment on the same supply line or capacitively coupled between cable bundles.

Coupling is achieved directly via the Coupling Decoupling Network (CDN) incorporated within the interference generator, or applied via a capacitive clamp with a distributed capacitance of 150pF.

The test setup used complies with all the dimension requirements set out in EN61000-4-4:2004 +A1:2010. The test generator is UKAS calibrated as such.

5ns

11.2 Fast Burst Transient Test Parameters

Test Burst D Test Burst P Dwell Polarity	on ition Frequency ouration	andard	50ns 5kHz 15ms 300ms 1 minute per Positive and None			
For mains te	esting the following	g coupling points	are used:			
(L1, • Neu • Eart • Live	, Neutral and Eart L2, L3, N and E ir tral only h only only L2 and L3 individu	n the case of thre	e phase syste	,	Applicab	ole
11.3 Fast	Transient Test Le	evels				
The following	g test voltages we	re used if applica	ble as per the	cable group ty	/pe:	
AC Supply Line	±500V ±1000V ±2000V ±4000V Not Applicable		DC Supply Line	±500V ±1000V ±2000V ±4000V Not Applicab	ole 🗵	
Signal Lines	±500V ±1000V ±2000V ±4000V Not Applicable					

11.4 EUT Test Results

For pass/fail criteria definitions please see section 8 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

	EUT test points – Direct Application	Performance Criteria Achieved	Performance Criteria Required
1	Liner PSU mains input	А	В
2	Distribution PSU mains input	A	В

		Performance	Performance
	EUT test points – Capacitive Clamp Application	Criteria	Criteria
		Achieved	Required
1	Camera cable (both ends)	В	В

Note; during the positive transients the camera re-sets and goes through its calibration procedure. Self recovers after the test.

Note;

The equipment met the performance requirements of EN50130-4 as defined in section 8.

11.5 Test Equipment

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
Fast Transient Generator	Schaffner	NSG1025	390	UH09	
Coupling Clamp	Schaffner	CDN 125	272	UH30	
Coupling Clamp (Transients)	Schaffner	CDN 125	N/A	UH98	\boxtimes
Temp/Humid/Barometer	RS Comp	None	None	UH110	
RF Sensor	TRaC	None	None	UH118	
EFT/B Network Plug-In	Schaffner	PNW2225	200140-042SC	UH161	\boxtimes
Mainframe	Schaffner	NSG2050	200130/556AR	UH170	\boxtimes
RF Sensor	TRaC	None	None	UH382	
Fast Transient Generator	Schaffner	NSG2025-1	170	UH383	
Temp/Humid/Barometer	Innovative	888R05	None	UH391	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH392	
Coupling Clamp	Schaffner	CDN 125	560	L270	
Mainframe	Schaffner	NSG2050	200130-240AR	L447	
Transient Plug-In	Schaffner	PNW2225	200140-045SC	L448	

Report Number: TRA-005584-35-00A

12 Voltage Surge Testing as per EN61000-4-5:2006

12.1 General

This test applies a high energy voltage surge on to the selected line under test. This simulates the surge created on the mains and also capacitively coupled on to signal cables during an electrical storm.

- Coupling to dc and mains is achieved directly via the Coupling Decoupling Network (CDN) incorporated within the interference generator.
- Coupling on shielded signal lines is achieved directly as per the specification using the 2Ω source impedance of the generator only using a 20m length of cable.
- Coupling to non-shielded signal lines is achieved directly using a 40Ω CDN giving a $40\Omega + 2\Omega = 42\Omega$ source impedance.

The test setup used complies with all the dimension requirements set out in EN61000-4-5:2006. The test generator is UKAS calibrated as such.

12.2 Voltage Surge Test Parameters

Pulse Rise Time	1.2µs
Pulse Duration	50µs
Pulse Repetition Frequency	Maximum of 1 per minute
Phase angles (for mains tests)	0°, 90°, 180°, 270°
Polarity	Positive and Negative
Number of Discharges	Five per polarity per phase angle per voltage
Deviation From Basic Test Standard	None

For mains testing the following coupling points are used:

- Live to Earth only (L1, L2 and L3 individually to E in the case of three phase systems)
- Neutral to Earth only
- Live to Neutral
- The following combinations in the case of three phase systems (L1-L2, L2-L3, L1-L3, L1-N, L2-N, L3-N)

12.3 Voltage Surge Test Levels

The following test voltages were used if applicable as per the cable group type:

AC Supply Line – Common Mode	±500V ±1000V ±2000V ±4000V Not Applicable	AC Supply Line – Differential Mode	±500V ±1000V ±2000V ±4000V Not Applicable	
DC Supply Line – Common Mode	±500V ±1000V ±2000V ±4000V Not Applicable	DC Supply Line – Differential Mode	±500V ±1000V ±2000V ±4000V Not Applicable	
Signal / Control Lines	±500V ±1000V ±2000V ±4000V Not Applicable			

12.4 EUT Test Results

For pass/fail criteria definitions please see section 8 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

	EUT test points – Mains/DC supply cables	Performance Criteria Achieved	Performance Criteria Required
1	Liner PSU mains input	А	В
2	Distribution unit mains input	Α	В

		Performance	Performance
	EUT test points – Signal/Control Cables	Criteria	Criteria
		Achieved	Required
1	Not Applicable	N/A	В

Note;

The equipment met the performance requirements of EN50130-4 as defined in section 8.

12.5 Test Equipment

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
Combination Wave Generator	Schaffner	CWG4-100	931520	UH42	\boxtimes
Temp/Humid/Barometer	RS Comp	None	None	UH110	
RF Sensor	TRaC	None	None	UH118	
CDN	Hilotest	CDN208	972420	UH138	
Impulse (Surge) Network Plug-In	Schaffner	PNW2055	200130-556AR	UH159	
Mainframe	Schaffner	NSG2050	200130/556AR	UH170	
RF Sensor	TRaC	None	None	UH382	
Temp/Humid/Barometer	Innovative	888R05	None	UH391	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH392	
Mainframe	Schaffner	NSG2050	200130-240AR	L447	
Surge Plug-In	Schaffner	PNW2055	200123-05SC	L449	
V-Surge Verification Jig	TRaC	None	None	L780	

13 Conducted RF Immunity as Per EN61000-4-6:2009

13.1 General

This test simulates the threat imposed by operating the equipment in the vicinity of intentional transmitters both fixed and mobile. It simulates the main coupling method for longer wavelengths (3.75m - 2000m) that couple onto cables that interface with the EUT.

Two coupling methods are used depending upon the type of cable under test:

Clamp

Coupling / Decoupling Network (CDN)

A computer controlled pre-calibrated level is applied to the coupling interface and the frequency is swept across the range of test at a predefined step size and time.

In order to achieve a test level confidence of 95% the actual field strength used during testing is raised by the level set out in the uncertainty budget for this test. The actual field strength reported in this section does not include this factor.

The test setup used complies with all the dimension requirements set out in EN61000-4-6:2009.

13.2 Conducted Immunity Test Parameters

Frequency Range	☐ 150kHz – 80MHz☐ 150kHz – 100MHz☐ 150kHz – 230MHz
Modulation type	⊠Amplitude – Sine Wave ⊠Keyed carrier (1Hz)
Amplitude Modulation Frequency	⊠ 1000Hz □ 400Hz
Dwell Time per momentary frequency	☐ 1second ☐ 2seconds ☑ 3seconds ☐ 4seconds
Test Voltage Mains Supply Cables	☐ 3Vrms ☑ 10Vrms ☐ 20Vrms
Test Voltage DC Supply Cables	☐ 3Vrms ☐ 10Vrms ☐ 20Vrms
Test Voltage Signal/Control Cables	☐ 3Vrms ☑ 10Vrms ☐ 20Vrms
Step Increment Deviation from Basic Test Standard	1% of the momentary frequency None

13.3 Conducted RF Immunity Test Frequencies

A full list of frequency points is given here in MHz; the exact frequencies used will be dependant upon the test range selected in the table above.

-1			9						
0.450	0.040	0.054	4.000	0.050	5.057	10 100	05.075	54.040	110.070
0.150	0.313	0.654	1.366	2.852	5.957	12.439	25.975	54.243	113.273
0.152	0.316	0.661	1.380	2.881	6.016	12.563	26.235	54.786	114.406
0.153	0.320	0.667	1.393	2.910	6.076	12.689	26.498	55.333	115.550
0.155	0.323	0.674	1.407	2.939	6.137	12.816	26.763	55.887	116.705
0.156	0.326	0.681	1.421	2.968	6.198	12.944	27.030	56.446	117.872
0.158	0.329	0.687	1.436	2.998	6.260	13.073	27.300	57.010	119.051
0.159	0.333	0.694	1.450	3.028	6.323	13.204	27.573	57.580	120.242
0.161	0.336	0.701	1.464	3.058	6.386	13.336	27.849	58.156	121.444
0.162	0.339	0.708	1.479	3.089	6.450	13.470	28.128	58.738	122.658
0.164	0.343	0.715	1.494	3.120	6.515	13.604	28.409	59.325	123.885
0.166	0.346	0.723	1.509	3.151	6.580	13.740	28.693	59.918	125.124
0.167	0.349	0.730	1.524	3.182	6.646	13.878	28.980	60.517	126.375
0.169	0.353	0.737	1.539	3.214	6.712	14.016	29.270	61.122	127.639
0.171	0.356	0.744	1.555	3.246	6.779	14.157	29.562	61.734	128.915
0.172	0.360	0.752	1.570	3.279	6.847	14.298	29.858	62.351	130.204
0.174	0.364	0.759	1.586	3.312	6.915	14.441	30.157	62.975	131.506
0.176	0.367	0.767	1.602	3.345	6.985	14.586	30.458	63.604	132.821
0.178	0.371	0.775	1.618	3.378	7.054	14.731	30.763	64.240	134.150
0.179	0.375	0.782	1.634	3.412	7.125	14.879	31.070	64.883	135.491
0.181	0.378	0.790	1.650	3.446	7.196	15.028	31.381	65.532	136.846
0.183	0.382	0.798	1.667	3.481	7.268	15.178	31.695	66.187	138.215
0.185	0.386	0.806	1.683	3.515	7.341	15.330	32.012	66.849	139.597
0.187	0.390	0.814	1.700	3.550	7.414	15.483	32.332	67.517	140.993
0.189	0.394	0.822	1.717	3.586	7.488	15.638	32.655	68.192	142.403
0.100	0.398	0.831	1.734	3.622	7.563	15.794	32.982	68.874	143.827
0.190			1.752						
	0.402	0.839		3.658	7.639	15.952	33.312	69.563	145.265
0.194	0.406	0.847	1.769	3.695	7.715	16.112	33.645	70.259	146.717
0.196	0.410	0.856	1.787	3.732	7.792	16.273	33.981	70.961	148.185
0.198	0.414	0.864	1.805	3.769	7.870	16.435	34.321	71.671	149.667
0.200	0.418	0.873	1.823	3.807	7.949	16.600	34.664	72.388	151.163
0.202	0.422	0.882	1.841	3.845	8.029	16.766	35.011	73.112	152.675
0.204	0.426	0.890	1.860	3.883	8.109	16.933	35.361	73.843	154.202
0.206	0.431	0.899	1.878	3.922	8.190	17.103	35.715	74.581	155.744
0.208	0.435	0.908	1.897	3.961	8.272	17.274	36.072	75.327	157.301
0.210	0.439	0.917	1.916	4.001	8.355	17.446	36.433	76.080	158.874
0.212	0.444	0.927	1.935	4.041	8.438	17.621	36.797	76.841	160.463
0.215	0.448	0.936	1.954	4.081	8.523	17.797	37.165	77.609	162.067
0.217	0.453	0.945	1.974	4.122	8.608	17.975	37.536	78.385	163.688
0.219	0.457	0.955	1.994	4.163	8.694	18.155	37.912	79.169	165.325
0.221	0.462	0.964	2.014	4.205	8.781	18.336	38.291	79.961	166.978
0.223	0.466	0.974	2.034	4.247	8.869	18.520	38.674	80.761	168.648
0.226	0.471	0.984	2.054	4.289	8.957	18.705	39.061	81.568	170.334
0.228	0.476	0.993	2.075	4.332	9.047	18.892	39.451	82.384	172.038
0.230	0.480	1.003	2.095	4.376	9.137	19.081	39.846	83.208	173.758
0.232	0.485	1.013	2.116	4.419	9.229	19.272	40.244	84.040	175.496
0.235	0.490	1.024	2.137	4.464	9.321	19.464	40.647	84.880	177.251
0.237	0.495	1.034	2.159	4.508	9.414	19.659	41.053	85.729	179.023
0.239	0.500	1.044	2.180	4.553	9.508	19.856	41.464	86.586	180.813
0.242	0.505	1.055	2.202	4.599	9.603	20.054	41.878	87.452	182.622
0.244	0.510	1.065	2.224	4.645	9.699	20.255	42.297	88.327	184.448
0.247	0.515	1.076	2.246	4.691	9.796	20.457	42.720	89.210	186.292
0.249	0.520	1.087	2.269	4.738	9.894	20.662	43.147	90.102	188.155
0.252	0.526	1.097	2.292	4.786	9.993	20.869	43.579	91.003	190.037
0.254	0.531	1.108	2.315	4.833	10.093	21.077	44.014	91.913	191.937
0.257	0.536	1.119	2.338	4.882	10.194	21.288	44.455	92.832	193.857
0.259	0.541	1.131	2.361	4.931	10.296	21.501	44.899	93.761	195.795
0.262	0.547	1.142	2.385	4.980	10.399	21.716	45.348	94.698	197.753
0.264	0.552	1.153	2.409	5.030	10.503	21.933	45.802	95.645	199.731
0.267	0.558	1.165	2.433	5.080	10.608	22.152	46.260	96.602	201.728
0.270	0.563	1.177	2.457	5.131	10.714	22.374	46.722	97.568	203.745
0.273	0.569	1.188	2.482	5.182	10.821	22.598	47.189	98.543	205.783
0.275	0.575	1.200	2.506	5.234	10.930	22.824	47.661	99.529	207.840
0.278	0.580	1.212	2.531	5.286	11.039	23.052	48.138	100.524	209.919
0.281	0.586	1.224	2.557	5.339	11.149	23.282	48.619	100.524	212.018
0.284	0.592	1.237	2.582	5.392	11.149	23.515	49.106	101.529	214.138
0.286	0.598	1.249	2.608	5.446		23.750	49.106		
0.289	0.604				11.373		50.093	103.570	216.280
0.289		1.261	2.634	5.501	11.487	23.988		104.606	218.442
0.292	0.610 0.616	1.274	2.661	5.556	11.602	24.228	50.594	105.652	220.627
0.295		1.287	2.687	5.611	11.718	24.470	51.099	106.708	222.833
0.298	0.622 0.629	1.300	2.714	5.668	11.835	24.715	51.610	107.775	225.061
0.301	0.629	1.313 1.326	2.741 2.769	5.724	11.954	24.962	52.127	108.853	227.312 229.585
0.304	0.641			5.781	12.073	25.212	52.648 53.174	109.942	
0.307	0.648	1.339	2.796	5.839 5.898	12.194	25.464	53.174	111.041	230.000
0.010	0.040	1.352	2.824	5.050	12.316	25.718	53.706	112.151	

Additional spot frequencies due to equipment harmonics / declared EUT sensitive frequencies: None.

13.4 EUT Test Results

For pass/fail criteria definitions please see section 8 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

	EUT test points – Mains/DC supply cables	Coupling Method	Performance Criteria Achieved	Performance Criteria Required
1	Liner PSU mains input	M3	А	A
2	Distribution PSU mains input	M2	А	Α

	EUT test points – Signal/Control Cables	Coupling Method	Performance Criteria Achieved	Performance Criteria Required
1	Camera Cable (both ends)	Clamp	А	A

Note;

The equipment met the performance requirements of EN50130-4 as defined in section 8.

13.5 Test Equipment

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
Signal Generator	Marconi	2022D	119164/030	UH02	
Two Line V-Network	Rohde & Schwarz	ESH3-Z5	863906/018	UH05	
Current Probe	Comtest	9145-1	9145-14	UH63	
Signal Generator	Marconi	2022D	119215/058	UH75	
Signal Generator	Marconi	2022D	119224/035	UH89	
75W Amplifier	AR	75A250	18951	UH104	\boxtimes
Signal Generator	Marconi	2023	112224/040	UH105	\boxtimes
Temp/Humid/Barometer	RS Comp	None	None	UH110	
CDN 3-wire	MEB	M3	12869	UH114	
CDN 3-wire	MEB	M3	12868	UH117	\boxtimes
RF Sensor	TRaC	N/A	None	UH118	
Current Probe	AH System	BCP200/529	103	UH130	
Current Probe	AH System	BCP200/529	104	UH134	
CDN M2	MEB	M"	12109	UH135	
ISN T200	Schaffner	ISN T2XX	16164	UH153	
CRFS ISN Adaptor Set	Schaffner	ADTXXX	None	UH154	
RF Sensor	Pro Hunter	None	None	UH258	
RF Power Sensor	Rohde & Schwarz	NRP-Z11	100002	UH260	
RF Power Meter	Rohde & Schwarz	NRP	100511	UH259	
Injection Clamp	Solar	9144-1N	078015	UH364	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH391	
Temp/Humid/Barometer	Innovative	888R05	None	UH392	

14 Voltage Dips and Short Interruptions as per EN61000-4-11:2004

14.1 General

This test simulates short duration dips and interruptions that the equipment may be subjected to when connected to the public utility supply.

The test setup used complies with all the dimension requirements set out in EN61000-4-11:2004. The test generator is UKAS calibrated as such.

14.2 Voltage Dips Test Levels

The following test voltages were used if applicable as per the cable group type:

Phase Shift	⊠ 0°
	☐ 45°
	□ 90°
	☐ 135°
	☐ 180°
	□ 270°
	☐ 315°
	☐ Not applicable dc powered
Reduction	30% reduction for 10ms
	60% reduction for 100ms
	60% reduction for 200ms
	>95% reduction for 10ms
	30% reduction for 10ms, 20ms, 100ms and 200ms
	⊠ 60% reduction for 10ms, 20ms, 100ms and 200ms
	□ 100% reduction for 10ms, 20ms and 100ms
	100% reduction for 20ms
Interruption	□ 100% interruption for 5s
Reduction repetition rate	
Number of reductions/interruptions	⊠ 3
production of the control of the con	5
Deviation From Basic Test Standard	None

14.3 EUT Test Results

For pass/fail criteria definitions please see section 8 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

Applicable	Mains Supply Cable – Voltage Reductions	Performance Criteria Achieved	Performance Criteria Required
	30% reduction for 10ms		
	60% reduction for 100ms		
	60% reduction for 200ms		
	>95% reduction for 10ms		
\boxtimes	30% reduction for 10ms, 20ms, 100ms and 200ms	Α	В
\boxtimes	60% reduction for 10ms, 20ms, 100ms and 200ms	Α	В
	100% reduction for 10ms, 20ms and 100ms	Α	В
	100% reduction for 20ms		

Applicable	Mains Supply Cable – Voltage Interruptions	Performance Criteria Achieved	Performance Criteria Required
	100% reduction for 5s	B	C

Note; The EUT powers down for each voltage interruption, self recovers after the test.

Note

The equipment met the performance requirements of EN50130-4 as defined in section 8.

14.4 Test Equipment

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
Variable Transformer	RS Components	8A	207-914	UH34	
3 phase Variac	TRaC	None	None	UH80	
Temp/Humid/Barometer	RS Comp	None	None	UH110	
Dropout/Variation Network Plug-in	Schaffner	PNW2003	200138-005SC	UH160	\boxtimes
Mainframe	Schaffner	NSG2050	200130/556AR	UH170	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH391	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH392	
Mainframe	Schaffner	NSG2050	200130-240AR	L447	
Dropout/ Variations Plug-In	Schaffner	PNW2003	200135-008SC	L450	

15 Radiated Emissions as per EN55022:2006 + A1:2007 - Class B

15.1 General

This test measures radiated electromagnetic emissions that may emanate from EUT enclosures and cables. This test ensures the protection of broadcast and telecommunication services used in the vicinity of the EUT.

Method 1 - Testing at Ringwood

The test setup used complies with all the dimension requirements set out in EN55022:2006 +A1:2007. The open area test site (OATS) meets the site attenuation measurements required by CISPR16-1-4:2004.

An initial scan is carried out in a screened room in order to establish a frequency list that is attributable to the EUT. Any emissions measurements that fall within $20 dB\mu V/m$ of the limit line are then maximised on the OATS by rotating the equipment through 360° and raising/lowering the antenna through 1-4m height for each frequency of interest.

Method 2 - Testing at Malvern / Skelmersdale

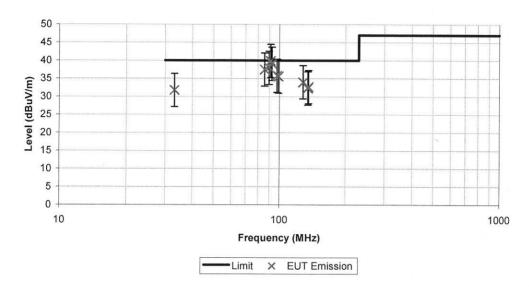
The test setup used complies with all the dimension requirements set out in EN55022:2006 +A1:2007. The semi-anechoic chamber used meets the site attenuation measurements required by CISPR16-1-4:2004.

An initial scan is carried out in order to establish a frequency list that is attributable to the EUT. Any emissions measurements that fall within $20 dB\mu V/m$ of the limit line are then maximised by rotating the equipment through 360° and raising/lowering the antenna through 1-4m height for each frequency of interest

15.2 Radiated Emission Test Parameters

Frequency Range	 ⊠ 30MHz – 1GHz □ 1GHz – 2GHz □ 2GHz – 5GHz □ 5GHz – 6GHz 	\boxtimes N/A – N	Лах EUT Fre Лах EUT Fre Лах EUT Fre	q Used	<500MHz
Measurement Bandwidth	 120kHz (Measurements ≤1GHz) 1MHz (Measurements ≥1GHz)				
Video Bandwidth (measurements >1GHz)	☐ 3MHz (Peak Detector) ☐ <3MHz (Average Detector)				
Detectors	Peak (≤1GHz scan / ≥1GHz Final Measurements) Average (≥1GHz Final Measurements) Quasi-peak (≤1GHz Final Measurements)				
Quasi-peak Detector Dwell	Minimum 2s per Fre	quency Poin	nt		
Frequency Step Size	50kHz (Measureme	nts <1GHz)			
Antenna Height	1 – 4 Metres				
EUT to Antenna Distance	□ 1m 🖂 :	3m	☐ 10m		30m
EUT Measurement Height	□ 0.8m Insulated T □ 0.1m Insulated S		t		

Report Number: TRA-005584-35-00A


15.3 Test Equipment

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
Bi-Log Antenna 30MHz - 2GHz	Chase	CBL6112	2098	L274	
Bi-Log Antenna 30MHz - 1GHz	Chase	CBL6111	1945	L290	
UHF Receiver 20 - 1000MHz	Rhode & Schwarz	ESVS10	837948/003	L317	
RFS Chamber (MAC)	EMV	MAC 4	MAC4-1009	L323	
UHF Receiver 20 - 1000MHz	Rhode & Schwarz	ESVS10	844594/003	L352	
UHF Receiver 20 - 1000MHz	Rhode & Schwarz	ESVS20	838804/005	L415	
Bi-Log Antenna 30MHz - 2GHz	Schaffner	CBL6112B	2761	L431	
RFS Chamber (Comm 1)	TRaC	¥	-	L717	
RFS Chamber (Comm 2)	TRaC	-	-	L718	
UHF Receiver 20 - 1000MHz	Rhode & Schwarz	ESVS10	825892/006	UH04	
2 Line V-network	Rhode & Schwarz	ESH3-Z5	863906/018	UH05	
Log Periodic Antenna	Schwarzbeck	UHALP 9108	AC2404C/1	UH28	
Clamp	Schwarzbeck	MDS21	932354	UH32	
E-Field Pre-scan Cable	TRaC	None	None	UH72	
Bi-Log Antenna 30MHz - 2GHz	Chase	CBL6112B	2803	UH93	\boxtimes
Temp/Humid/Barometer	RS Comp	None	None	UH110	
UHF Receiver 20 - 1000MHz	Rhode & Schwarz	ESVS10	841431/014	UH186	
Bi-Log Antenna	York	CBL611/A	1618	UH191	
Bi-Cone Antenna	AH Systems	2101-3	396	UH193	
LISN	Rhode & Schwarz	ESH3- Z5.831.5	8407 31/015	UH195	
Receiver / Analyser	Rhode & Schwarz	ESU 26	100081	UH377	\boxtimes
Log Periodic Antenna 0.85 – 26.5GHz	Rhode & Schwarz	HL050	100457	UH385	
RF Chamber 1	Rainford EMC	31241	472-CH1-001	UH387	
RF Chamber 2	Rainford EMC	31144	472-CH2-001	UH388	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH391	\boxtimes
Temp/Humid/Barometer	Innovative	888R05	None	UH392	
2 Line V-network	Rhode & Schwarz	ENV216	101027	UH396	

15.4 EUT Test Results

Radiated Emissions - Class B 3m measuring distance

Frequency (MHz)	Level (dΒμV/m)	Limit	Antenna Polarisation	Angle (°)	Notes	Margin (dB)
33.15	31.8	40.0	Vertical	108		8.2
85.70	37.5	40.0	Vertical	50	*	2.5
89.80	38.0	40.0	Vertical	90	*	2.0
91.25	39.9	40.0	Vertical	91	*	0.1
92.35	39.1	40.0	Vertical	100	*	0.9
97.50	35.8	40.0	Vertical	33	*	4.2
99.10	35.6	40.0	Vertical	66	*	4.4
128.00	34.0	40.0	Vertical	100		6.0
134.70	32.3	40.0	Vertical	10		7.7
135.45	32.7	40.0	Vertical	70		7.3

Error bars shown on the above graph represent measurement uncertainty for this test, for each frequency point, the EUT is said to either:

- Pass
- Pass within limits of uncertainty
- · Fail within limits of uncertainty
- Fail
- # In the notes section represents a measurement performed at 3m that has been transposed for display on the graph to a measurement distance of 10m. This is performed when the noise floor at the frequency of interest is too high to take a measurement at 10m
- * In the notes section highlights a pass within limits of uncertainty.

Report Number: TRA-005584-35-00A

16 Conducted Emissions as per EN55022:2006 + A1:2007 - Class B

16.1 General

This test measures conducted noise that may be present on an EUT's power supply cable. This test ensures the protection of broadcast and telecommunication services used in the vicinity of the EUT.

The test setup used complies with all the dimension requirements set out in EN55022:2006 +A1:2007.

16.2 Conducted Emission Test Parameters

Frequency Range Frequency Step Size Measurement Bandwidth

Quasi-peak Detector Dwell

EUT Measurement Height

Detectors

150kHz - 30MHz

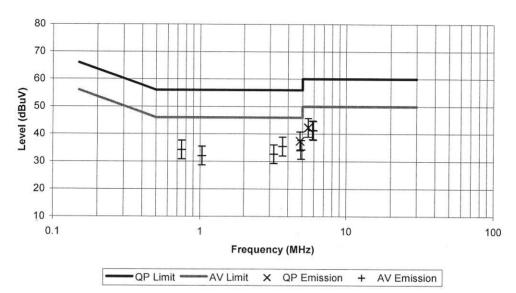
5kHz 9kHz

Peak (scan)

Quasi-peak (Final Measurements) Average (Final Measurements) Minimum 2s per frequency point

□ 0.8m Insulated Table

0.1m Insulated Support/Pallet Mounted


16.3 Test Equipment

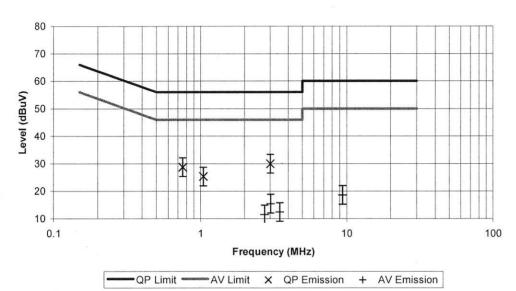
The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	TRaC Number	Actual Equipment Used
3-Phase LISN/AMN	Schwarzbeck	NSKL8128	8128151	L207	
Receiver	Rhode & Schwarz	ESHS20	837960/003	L237	
LISN/AMN	Rhode & Schwarz	ESHS3-Z5	839135/013	L238	
LISN/AMN	Rhode & Schwarz	ESHS3-Z5	837469/010	L289	
Receiver	Rhode & Schwarz	ESHS10	844077/019	L353	
Receiver	Rhode & Schwarz	ESHS10	830051/001	UH03	
LISN/AMN	Rhode & Schwarz	ESH3-Z5	863906/018	UH05	
Current Probe	Comtest	9145-1	946612	UH63	
LISN/AMN	Schwarzbeck	NSLK8128	164	UH76	
Receiver	Rhode & Schwarz	ESPC	843756/007	UH101	
Temp/Humid/Barometer	RS Comp	None	None	UH110	
ISN T200	Schaffner	ISN T2XX	16164	UH153	
Receiver	Rhode & Schwarz	ESHS10	841429/012	UH187	\boxtimes
LISN	Rhode & Schwarz	ESH3-Z5.831.5	8407 31/015	UH195	
Temp/Humid/Barometer	Innovative	888R05	None	UH391	
Temp/Humid/Barometer	Innovative	888R05	None	UH392	

16.4 EUT Test Results Linear PSU and Predator camera

Conducted Emissions - Class B

Frequency (MHz)	Quasi Peak Level (dB µV)	Average Level (dB µV)	Quasi Peak Limit (dB μV)	Average Limit (dB µV)	Notes
0.75		34.3		46	
1.03		32.1		46	
3.19		32.7		46	
3.665		35.5		46	
4.9		34.3		46	
5.93		41.2		46	
4.815	37.4		56		
5.48	42.3		60		
5.86		41.4		50	


Error bars shown on the above graph represent measurement uncertainty for this test, for each frequency point, the EUT is said to either:

- Pass
- · Pass within limits of uncertainty
- Fail within limits of uncertainty
- Fail

^{*} In the notes section highlights a pass within limits of uncertainty

16.5 EUT Test Results distribution unit PSU

Conducted Emissions - Class B

Frequency (MHz)	Quasi Peak Level (dB µV)	Average Level (dΒμV)	Quasi Peak Limit (dB μV)	Average Limit (dB µV)	Notes
1.04499	25.36		56		
3.02		15.49		46	
9.4		18.61		50	
0.755	28.78		56		
3.005	30		56		
2.74		11.54		46	
3.495		12.46		46	

Error bars shown on the above graph represent measurement uncertainty for this test, for each frequency point, the EUT is said to either:

- Pass
- Pass within limits of uncertainty
- Fail within limits of uncertainty
- Fai

In the notes section highlights a pass within limits of uncertainty

17 EMC Modifications

The following EMC modifications were incorporated in the equipment during testing, in the order detailed below giving reference to the associated test.

Any modifications carried out during the emissions testing are listed below:

No.	Modification	Reason for modification
1	2x 0.47µF 'Y' capacitors fitted at the mains input terminal to the liner PSU	Failing conducted emissions

Any modifications carried out during the immunity testing are listed below:

No.	Modification	Reason for modification
1	10nf capacitor fitted across pins 4 and 5 on com 3 board 000- 0154-02	Failing conducted and radiated immunity
2	10nf capacitor fitted across pins 4 and 5 on com 13 board 000-0155-03	Failing conducted and radiated immunity

Upon completion of each modification, consideration was given to the previously conducted test(s). The modification(s) carried out were deemed not to have invalidated previous results.

Note: Opinions made above, fall outside the TRaC Global Ltd. UKAS scope of laboratory accreditation, and are based entirely on rationale and assumption obtained from technical information, competence and experience, deemed correct at the time of test.

18 Conclusion

The EUT meets the performance requirements of the specification, when tested in a system configuration described in section 5 of this report.

Note should be taken of any modifications listed in the relevant section of this report.

The EUT achieved the following performance criteria during the test programme.

EMISSIONS

Test Standard	Test Standard Test Order		Class		Pass Within Limits of Uncertainty	
EN55022:2006 +A1:2007 – Radiated Electromagnetic Emissions	1	А	в⊠		×	
EN55022:2006 +A1:2007 - Conducted Electromagnetic Emissions	3 / 11	A 🗆	в⊠	\boxtimes		
EN55011:2009 +A1:2010 – Radiated Electromagnetic Emissions		А	В□			
EN55011:2009 +A1:2010 – Conducted Electromagnetic Emissions		А□	В□			

IMMUNITY

Basic Test Standard	Test Order	Applicable	Performance Criteria Required	Performance Criteria Achieved
EN61000-4-2:2009 – Electrostatic Discharge	10 / 12		В	А
EN61000-4-3:2006 +A2:2010 – Radiated Immunity	4/9	\boxtimes	А	А
EN61000-4-4:2004 +A1:2010 – Electrical Fast Transients	6	\boxtimes	В	В
EN61000-4-5:2006 – Voltage Surge	5	\boxtimes	В	Α
EN61000-4-6:2009 – Conducted Radio Frequency Immunity	2/8	\boxtimes	А	А
EN61000-4-8:2010 – Power Frequency Magnetic Field				
EN61000-4-9:1994 +A1:2001 – Pulse Magnetic Field				
EN61000-4-10:1994 +A1:2001 – Damped Oscillatory Magnetic Fields				
EN61000-4-11:2004 – Voltage Dips and Short Interruptions	7	\boxtimes	See Relevan	t Test Section

19 Measurement Uncertainty

Static Discharge

Tolerance Parameter	TRaC UH01	TRaC UH85	TRaC L697	TRaC L327	TRaC RESD1	Specification Tolerance
Negative Discharge Current at 2kV	13.40%	11.18%	24.95%	14.98%	11.31%	30%
Negative Discharge Current at 8kV	28.10%	11.96%	24.03%	14.06%	6.85%	30%
Negative Discharge Voltage	3.76%	2.95%	5.97%	3.33%	3.20%	10%
Negative Rise Time at 2kV	7.24%	1.58%	9.69%	4.52%	4.12%	17.7%
Negative Rise Time at 8kV	6.06%	2.17%	3.81%	1.34%	3.18%	17.7%
Positive Discharge Current at 2kV	19.70%	11.18%	13.55%	10.70%	10.08%	30%
Positive Discharge Current at 8kV	28.10%	11.96%	20.09%	15.24%	6.97%	30%
Positive Discharge Voltage	4.35%	2.95%	6.28%	3.71%	2.52%	10%
Positive Rise Time at 2kV	3.72%	5.81%	5.58%	11.57%	1.51%	17.7%
Positive Rise Time at 8kV	6.06%	5.81%	12.40%	12.04%	1.07%	17.7%

Voltage Surge (1.2/50μs)

Tolerance Parameter	TRaC UH42	TRaC L449	TRaC UH159	TRaC L429	TRaC RBest1	Specification Tolerance
Positive Voltage	5.78%	10.37%	7.99%	6.88%	6.13%	10%
Negative Voltage	6.43%	7.33%	8.42%	6.88%	5.34%	10%
Positive Duration	14.50%	12.86%	3.54%	6.29%	19.22%	20%
Negative Duration	12.45%	-16.66µs	3.73%	5.88%	19.02%	20% / +10,-25μs
Positive Front Time	19.83%	16.97%	19.21%	25.80%	10.67%	30%
Negative Front Time	18.96%	18.57%	18.50%	27.50%	12.14%	30%
Peak Current	9.10%	9.76%	9.76%	9.10%	7.71%	10%
Duration (8/20µs)	13.47%	5.26%	14.67%	9.46%	11.14%	10%
Front Time (8/20µs)	7.14%	10.00%	28.12%	9.67%	8.58%	10%
Current Undershoot	Outside Tolerance	Inside Tolerance	Inside Tolerance	Outside Tolerance	Inside Tolerance	30% of Peak Current

Transients (5/50ns)

Tolerance Parameter	TRaC L448	TRaC UH161	TRaC L429	TRaC UH9	TRaC RBest1	Specification Tolerance
Positive Voltage	3.31%	9.37%	7.25%	5.92%	7.71%	10%
Negative Voltage	4.55%	7.03%	4.59%	5.26%	8.80%	10%
Source impedance (positive waveform)	8.07%	7.67%	14.53%	6.45%	8.80%	20%
Source impedance (negative waveform)	N/A	N/A	N/A	N/A	N/A	20%
Pulse Parameters (positive waveform)	4.87%	13.82%	22.08%	19.51%	9.83%	30%
Pulse Parameters (negative waveform)	4.06%	8.90%	12.19%	18.69%	8.07%	30%
Burst Parameters	1.00%	1.00%	1.00%	1.00%	1.00%	10%

Voltage Dips and Short Interruptions

Tolerance Parameter	TRaC UH160	TRaC L450	TRaC L429	TRaC RBest1	Specification Tolerance
Event Duration	1.00%	1.00%	1.00%	1.00%	10%
Repetition Time	1.00%	1.00%	1.00%	1.00%	10%
Supply Regulation	<5µs	<5µs	<5µs	<5µs	<5µs
Phase Delay	2.98%	2.98%	2.98%	2.98%	10%
Switching time at 90 degrees	3.9µs	2.95µs	2.42µs	2.78µs	1-5µs
Switching time at 270 degrees	3.9µs	3.04µs	2.12µs	2.89µs	1-5us

All uncertainties listed are standard uncertainties multiplied by a coverage factor of k=1.64 for tests with given levels and k=2.00 for all other tests to give a 95% confidence level.

Conducted Emissions

- [1] Conducted Emissions 9kHz to 150kHz = 3.7dB
- [2] Conducted Emissions 150kHz to 30MHz = 3.4dB

Radiated Emissions

- [1] Radiated Emissions 30MHz to 1GHz using Chase Bilog CBL6112 Antenna = 4.6dB
- [2] Radiated Emissions 1GHz to 6GHz using R&S Log Periodic Antenna = 5.5dB
- [3] Radiated Emissions 1GHz to 6GHz using EMCO 3115 Horn Antenna = 5.9dB

Conducted Immunity

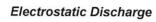
- [1] Re-establishment of pre-calibrated field = 1.6dB
- [2] Limiting of injected level using monitor coil = 2.1dB

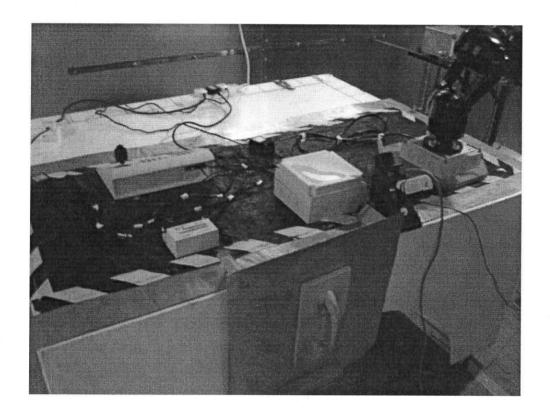
Radiated Immunity

- [1] Re-establishment of pre-calibrated field level = 1.74dB
- [2] Dynamic feedback calibrated field level = 1.77dB

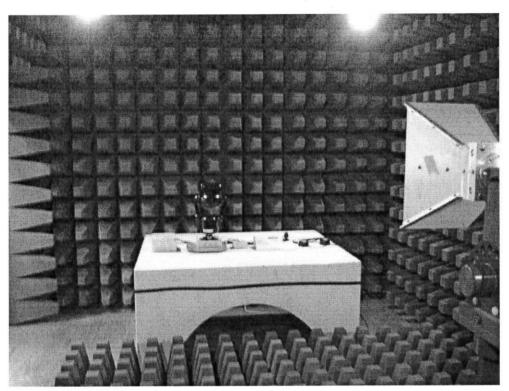
Power Frequency Magnetic Field

[1] Magnetic field immunity up to 1000A/m DC-400Hz = 1.7dB

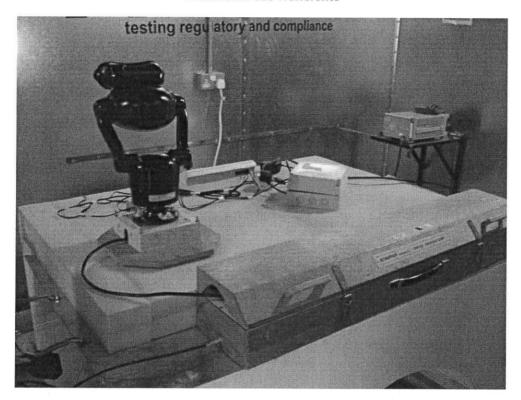

Spurious Emissions

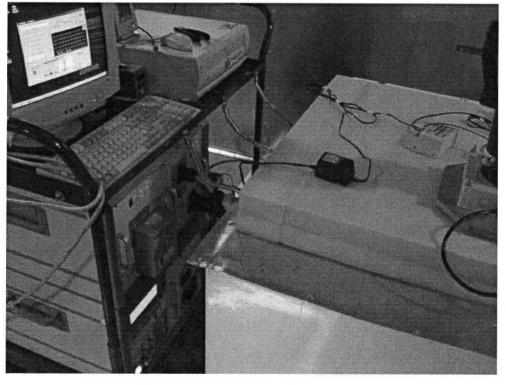

[1] Uncertainty in test result = 4.75dB

Cable Calibrations

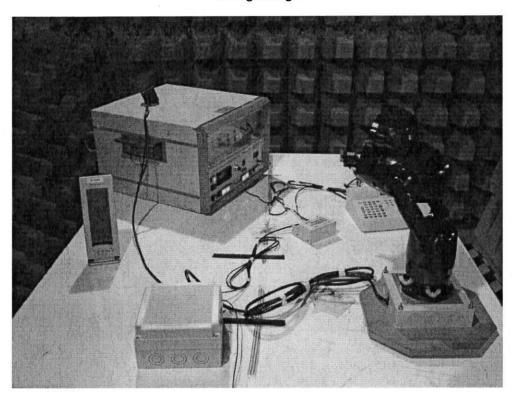

[1] Cable calibration up to 18GHz = **0.4dB**

20 APPENDIX A – PHOTOGRAPHS

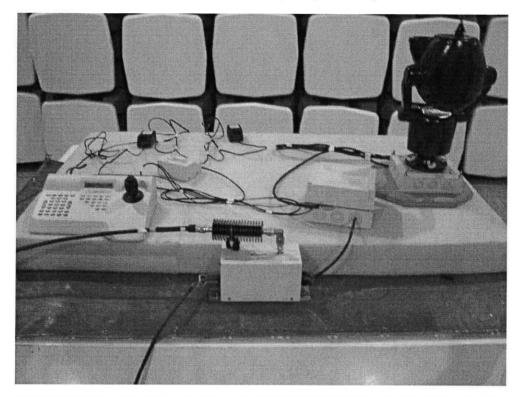


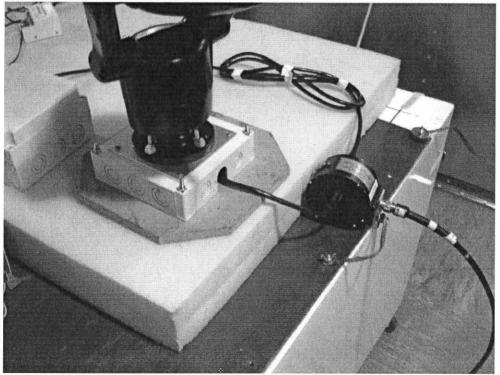


Radiated Immunity

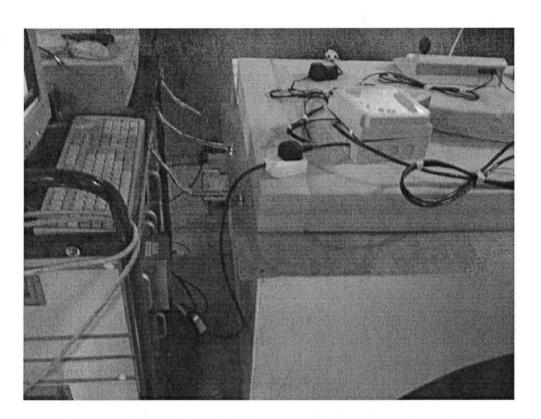


Electrical Fast Transients

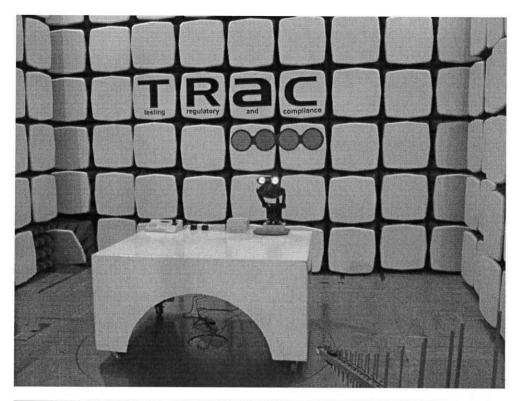


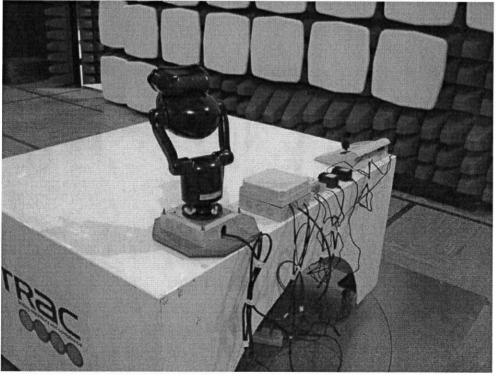


Voltage Surge

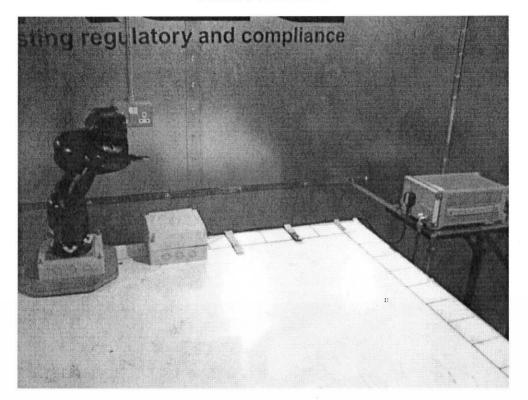


Conducted Radio Frequency Immunity





Voltage Dips and Interruptions



Radiated Emissions

Conducted Emissions

Report Number: TRA-005584-35-00A

testing regulatory and compliance

NORTH WEST

Unit 1, Pendle Place, Skelmersdale, West Lancashire, WN8 9PN UK.
T+44 (0)1695 556666 F+44 (0)1695 557077 E test@tracglobal.com
www.tracglobal.com