THIS QUESTION PAPER MUST BE HANDEDIN TO THE INVIGILATOR AT THE END OF THE EXAMINATION

CRANFIELD UNIVERSITY

Examination

SCHOOL OF ENERGY, ENVIRONMENT AND AGRIFOOD Water and Wastewater Engineering STREAM

PROCESS SCIENCE AND ENGINEERING

Tuesday 5 January 2016: 13.00-15.00
Open Book / Open Note

INSTRUCTIONS TO CANDIDATES:

Answer ALL questions
Start each answer on a separate page.
Candidates are allowed a non-programmable calculator.
Watermaths text and annotations in the book only.

PAGE LEFT INTENTIONALLY BLANK

You are expected to answer all questions

Provide the results and the process through which you obtained the results (equations, assumptions ...)

\#	Question	Mk
1	A $10 \mathrm{~m}^{3}$ CSTR treats water flowing at $25 \mathrm{~m}^{3} / \mathrm{h}$, what is the removal efficiency (1 decimal) when the reaction rate is 0.08 per min?	6
2	A treated effluent has a bacteria count of $100 \mathrm{cfu} / \mathrm{mL}$ and a phosphorus concentration of $2 \mathrm{mg} / \mathrm{L}$. Assuming phosphorus is the limiting nutrient, what will be the bacteria concentration after 24 hours of storage if the half saturation coefficient is $11 \mathrm{mg} / \mathrm{L}$ and the specific growth rate is 0.035 per min?	4
3	What is the half-life of phenol $\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}\right)$ in wastewater comprising a concentration of $47 \mathrm{mg} / \mathrm{L}$ assuming a second order reaction and a rate constant of $80 \mathrm{~L} /(\mathrm{mol} \cdot \mathrm{day})$?	5
4	Water containing $25 \mathrm{mg} / \mathrm{lCO}_{2}$ flows at $50 \mathrm{~m}^{3} / \mathrm{h}$ through a stripper fed with $0.05 \% \mathrm{CO}_{2}$ in air which is flowing at a rate of $75 \mathrm{~kg} / \mathrm{h}$. What is the outlet aqueous CO_{2} concentration (in $\mathrm{mg} / \mathrm{L}, 2$ decimals) if the off-gas contains $1.2 \% \mathrm{CO}_{2}$? Assume no loss of water by the process and no changes in the $\mathrm{CO}_{2} / \mathrm{HCO}_{3}{ }^{-}$equilibrium.	7
5	A water flow of 20 MLD (megalitres/day) containing $250 \mathrm{mg} / \mathrm{L}$ suspended solids is to be clarified to produce treated water containing $50 \mathrm{mg} / \mathrm{L}$ total suspended solids and a sludge product of solids concentration $22 \mathrm{~g} / \mathrm{L}$.	10
	a) What is the flow rate of the clarified water in $\mathrm{m}^{3} / \mathrm{h}$ (2 decimals)?	5
	b) What percentage of the feedwater solids are recovered in the sludge (1 decimal)?	5
6	Wastewater at $20^{\circ} \mathrm{C}$ flows through a 5 cm diameter precast concrete pipe at a flow of $5 \mathrm{~m}^{3} / \mathrm{h}$. Turbulent flow conditions are required to avoid settling of solids in the pipe.	10
	a) Are the conditions adequate?	5
	b) What is the minimum flow (in $\mathrm{m}^{3} / \mathrm{h}, 2$ decimals) required to obtain turbulent conditions?	5
7	Water at $10^{\circ} \mathrm{C}$, initially stored in a tank, is fed through a 50 mm diameter pipe to a treatment unit (at ground level) requiring a flow of 15 L / s. At what height (in $\mathrm{m}, 2$ decimals) should the tank be installed knowing that both the tank and pipe outlet are open to the atmosphere?	7
8	What is the molar concentration (2 decimals) of a ferric chloride solution with a 17% weight concentration (w / w) and a density of $1.4 \mathrm{~kg} / \mathrm{L}$?	6
9	The pH of a water is adjusted by adding sulphuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ at a concentration of 0.005 M .	12
	a) What is the final pH if the initial pH was 7.8?	6
	b) What would be the final pH (2 decimals) if the water contained a bicarbonate concentration of 55 mM ?	6
10	Determine the mass transfer coefficient (1 decimal) for oxygen when water at $20^{\circ} \mathrm{C}$ passes through a 10 mm pipe at a flow rate of $1.3 \mathrm{~L} / \mathrm{min}$.	12
11	Oxygen mass transfer takes place across a $3.5 \mathrm{~m}^{2}$ boundary from a solution in equilibrium with air to a non-equilibrated solution with a dissolved oxygen concentration of $1.5 \mathrm{mg} / \mathrm{l}$ at a rate of $786 \mathrm{mg} / \mathrm{min}$. If the mass transfer coefficient is $3 \times 10^{-4} \mathrm{~m} / \mathrm{s}$, what is the partial pressure of the equilibrated solution (in atmospheres, 3 decimals)?	6
	Total	85

