BIRKBECK COLLEGE

(University of London)

BSc EXAMINATION

SCHOOL OF SCIENCE
Department of Earth and Planetary Sciences
INTRODUCTION TO GEOCHEMISTRY

EASC038H4
15 credits
Wednesday 27 May 2015
14.30-16.30

INSTRUCTIONS

Answer THREE questions. [Candidates are advised to spend FORTY minutes on each question. Use diagrams and chemical reactions to support written answers wherever possible]

ALL QUESTIONS CARRY EQUAL MARKS
[Candidates will be provided with a Periodic Table of the Elements and an Equation bank]

1. Explain, using diagrams and examples, the differences between ionic, covalent, metallic and van der Waals bonds.
2. Using diagrams, describe silicate polymers. Explain how isolated, dimer and single chain silicate mineral classes are formed from the silicate tetrahedron.
3. Explain the first and second laws of thermodynamics. Define the terms 'change in enthalpy', 'entropy’ and 'Gibb's Free Energy'. Given data for standard entropy and enthalpy values, how would you determine whether a reaction might occur spontaneously?
4. Write down the Condensed Phase Rule and explain what is meant by the terms 'component' and 'phase'. Draw a sketch of the diopside-anorthite T-X diagram and use it to explain how a liquid with an initial composition of 20% anorthite and 80% diopside changes as it cools from $1500^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$.
5. Sketch an X-Y plot with ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ on the y -axis and ${ }^{87} \mathrm{Rb} /{ }^{86} \mathrm{Sr}$ on the x -axis, and draw an isochron for a hypothetical granite intrusion on this plot. Explain how this plot can be used to determine the age and petrogenesis of the granite intrusion.
6. Summarise the differences between the chemical compositions of sea water and rain water. Explain why the composition of sea water is relatively constant, whereas composition of rain water is more variable.

Equation Bank

$$
\begin{aligned}
& \Delta H=H_{\text {products }}-H_{\text {reactants }} \\
& G=H-T S \\
& \Delta G=\Delta H-T \Delta S \\
& k=A e^{-E a / R T} \\
& \varphi+F=C+2 \\
& \varphi+F=C+1 \\
& J_{i}=-D_{i} d c_{i} / d x \\
& N=N_{0} e^{-\lambda t} \\
& \delta P / \delta T=\Delta S / \Delta V \\
& \delta c_{\text {product }} / \delta T=\delta C_{\text {reactant }} / \delta T \\
& J_{i}=-D_{i} \delta c_{i} / \delta x \\
& K=[C]^{c}[D]^{d}[E]^{e} /[A]^{a}[B]^{b} \\
& I=1 / 2 \Sigma m_{i} z_{i}^{2} \\
& D=P\left(e^{\lambda t}-1\right)+D_{0} \\
& t / 2=\ln 2 / \lambda
\end{aligned}
$$

$$
{ }^{87} \mathrm{Sr}={ }^{87} \mathrm{Rb} \text { * }\left(\mathrm{e}^{\lambda \mathrm{t}}-1\right)+{ }^{87} \mathrm{Sr}_{0}
$$

$$
{ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}={ }^{87} \mathrm{Rb} /{ }^{86} \mathrm{Sr} * \lambda \mathrm{t}+{ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}_{0}
$$

$$
\delta y / \delta x=\lambda t
$$

$$
\delta_{\text {sample }}=\left(R_{\text {sample }}-R_{\text {standard }} / R_{\text {sample }}\right) * 1000
$$

*lanthanoids	$\begin{array}{\|c} \mid \text { nanamaum } \\ \mathrm{s7} \\ \mathrm{La} \end{array}$	$\begin{aligned} & \substack{\text { camm } \\ \mathrm{Cem} \\ \mathrm{Ce}} \end{aligned}$	$\begin{aligned} & 59 \\ & \mathrm{Pr} \end{aligned}$	$\stackrel{\substack{\text { neodmum } \\ \text { No }}}{ }$		$\begin{aligned} & \mathrm{sem}_{62} \mathrm{sm} \\ & \mathrm{~S}_{2} \end{aligned}$	$\begin{aligned} & \text { enuroum } \\ & \text { E3 } \\ & \text { Eu } \end{aligned}$	$\begin{aligned} & \text { cadomum } \\ & \text { Gd } \\ & \text { Gd } \end{aligned}$	$\begin{aligned} & \text { andm } \\ & \text { Tb } \end{aligned}$	$\begin{aligned} & \text { maxaid } \\ & \text { Dy } \end{aligned}$	$\begin{aligned} & \text { momm } \\ & \text { Ho } \\ & \text { Ho } \end{aligned}$	$\begin{aligned} & \text { entiom } \\ & \text { Er } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { nuwim } \\ \text { Tm } \end{array}$	$\begin{aligned} & \text { neman } \\ & \text { Yb } \end{aligned}$
**actinoids							$\begin{aligned} & \text { Am } \\ & \hline \text { Am } \end{aligned}$	$\begin{gathered} 96 \\ C m \end{gathered}$	$\begin{aligned} & \text { Bk } \\ & \hline \end{aligned}$	Cf		Fm	$\begin{aligned} & 101 \\ & M d \end{aligned}$	No

© Birkbeck College 2015

