BIRKBECK, UNIVERSITY OF LONDON

BSc EXAMINATION
SCHOOL OF SCIENCE

Department of Earth and Planetary Sciences

INTRODUCTION TO GEOCHEMISTRY
EASC038H4

15 credits

<date>

Time Allowed: 2 HOURS AND 45 MINUTES

INSTRUCTIONS

Answer THREE questions. [Candidates are advised to spend 40 minutes on each question, and to finish writing and begin the document upload process 2 hours after starting the exam. Use diagrams, equations and chemical reactions to support written answers wherever possible]

ALL QUESTIONS CARRY EQUAL MARKS

Candidates are provided with a Periodic Table of the Elements and an Equation bank on the final two pages.

Candidates are permitted to use a scientific calculator, Excel, or similar means of carrying out calculations

Show all calculations and units in your answers.

You must type your answers, and it is recommended that you type out calculations. You may include sketch figures and hand-written calculations where appropriate, by uploading an image of your sketch and including this in your submitted document.

You are not permitted to include copied graphics or text from lecture notes in your answer.
© Birkbeck College 2020
EASC038H4
Page 1 of 6

Q1 Consider the following binary phase diagram for the system forsterite (Fo) anorthite (An).

a) How many components does this system have? [5\%]
b) Consider point A on this diagram (the eutectic). Answer the following:
i) How many phases coexist at this point? [5\%]
ii) How many degrees of freedom are there at this point? [5\%]
iii) Give your reason for the answer to (ii) above. [5\%]
c) What is the melting temperature of pure:
i) forsterite; [5\%]
ii) a mixture of forsterite and anorthite crystals in eutectic proportions. [5\%]
d) Consider the heating and melting of a rock consisting of 60\% forsterite and 40% anorthite crystals.
i) What is the composition of the first droplet of melt? [10\%]
ii) With continued heating, which phase is exhausted first? [10\%]
iii) At what temperature does the rock become fully molten? [10\%]
e) At the eutectic in this system, the process of melting can be described with a chemical reaction: 7 Fo $+18 \mathrm{An}=25$ liquid. Would you predict this reaction to be endothermic or exothermic, and why? [20\%]
f) The volume change of this eutectic melting reaction is slightly positive (the liquid has a higher volume than the solid). If this reaction were plotted as a line on a diagram of temperature (on the x-axis) against pressure (on the y-axis), would you expect that line to have a positive or negative slope? You may wish to refer to either Le Chatelier's principle or the Clapeyron equation in your answer. [20\%]

Q2

a) Describe how radioactive isotopes can be used to determine the age of geological materials, using the ${ }^{87} \mathrm{Rb}-{ }^{87} \mathrm{Sr}$ system as an example. [70\%]
b) Explain how an isotope evolution diagram works, using the system ${ }^{87} \mathrm{Rb}-{ }^{87} \mathrm{Sr}$ as an example. [30\%]

Q3 Limestone (calcite) dissolves in rainwater in the presence of carbonic acid according to the following reaction:

$$
\left.\mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})}=\mathrm{Ca}^{2+}(\mathrm{aq})+\mathrm{HCO}_{3^{-}}{ }^{-} \mathrm{aq}\right)
$$

a) Balance this equation. [10\%]
b) Which term best describes this type of chemical weathering: dissolution, oxidation, or hydrolysis? [5\%]
c) What is the origin of carbonic acid in natural waters? Write a reaction to describe this process. [15\%]
d) At a given location, the reactants and products of this reaction are all found to coexist and are assumed to be in equilibrium. In this situation:
i) What is the solvent? [5\%]
ii) What is/are the solutes? [5\%]
iii) Comment on the saturation of the solution with respect to calcite. [10\%]
e) If 1 g of calcite were to dissolve in a kilogram of water, what would the concentration of Ca^{2+} ions in the solution be? Express your answer in molality, i.e. mol kg ${ }^{-1}$. [35\%]
f) A sample of rainwater contains $1.6 \times 10^{-6} \mathrm{~mol} \mathrm{l}^{-1}$ of H^{+}. What is its pH ? [15\%]

Q4

a) Give an illustrated account of ionic, covalent and metallic bonding, with examples of materials displaying each type of bonding. [75\%]
b) Why are bonds in silicate minerals described as being neither pure ionic, nor pure covalent, and how can we predict how ionic or covalent a particular bond might be? [25\%]

Q5

a) What is an exothermic reaction? Give an example of one. [15\%]
b) What is entropy? [10\%]
c) How is the concept of Gibbs free energy used to predict the feasibility of chemical reactions? [25\%]
d) Why might a thermodynamically-feasible reaction not occur? [25\%]
e) Explain why higher temperature will lead to a higher reaction rate. You may wish to refer to the Arrhenius equation. [25\%]

Q6

a) What name is given to a positively-charged ion? [5\%]
b) Define the following terms [15\%]
i) Ionisation energy;
ii) Electronegativity;
iii) Valence.
c) Why is water such an effective solvent of ionic crystals? [20\%]
d) Water is present in the structure of some silicate minerals. The following reaction describes the hydration of forsterite (olivine) to serpentine:
$\mathrm{Mg}_{2} \mathrm{SiO}_{4}[\mathrm{~s}]+\mathrm{SiO}_{2}[\mathrm{aq}]+\mathrm{H}_{2} \mathrm{O}[\mathrm{I}]=\mathrm{Mg}_{3} \mathrm{Si}_{2} \mathrm{O}_{5}(\mathrm{OH})_{4}[\mathrm{~s}]$
i) Balance this reaction. [15\%]
ii) Where on Earth might such a reaction occur? [10\%]
e) Serpentine is a sheet silicate. Give a brief account of the structure of sheet silicates in terms of the arrangement and bonding of their $\left[\mathrm{SiO}_{4}\right]^{4-}$ complex anions. [35\%]

Equation Bank

```
\(\Delta \mathrm{H}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }}\)
\(\Delta \mathrm{G}=\mathrm{G}_{\text {products }}-\mathrm{G}_{\text {reactants }}\)
\(\mathrm{G}=\mathrm{H}-\mathrm{TS}\)
\(\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}\)
\(\mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}}\)
\(\varphi+F=C+2\)
\(\varphi+\mathrm{F}=\mathrm{C}+1\)
\(\mathrm{J}_{\mathrm{i}}=-\mathrm{D}_{\mathrm{i}} \mathrm{dc} / \mathrm{dx}\)
\(N=N_{0} e^{-\lambda t}\)
\(\delta \mathrm{P} / \delta \mathrm{T}=\Delta \mathrm{S} / \Delta \mathrm{V}\)
\(\delta \mathrm{c}_{\text {product }} / \delta \mathrm{T}=\delta \mathrm{c}_{\text {reactant }} / \delta \mathrm{T}\)
\(\mathrm{J}_{\mathrm{i}}=-\mathrm{D}_{\mathrm{i}} \delta \mathrm{c}_{\mathrm{i}} / \delta \mathrm{x}\)
\(K=[C]^{c}[D]^{d}[E]^{e} /[A]^{a}[B]^{b}\)
\(\mathrm{I}=1 / 2 \sum \mathrm{~m}_{\mathrm{i}} \mathrm{z}^{2}{ }^{2}\)
\(t_{1 / 2}=\ln 2 / \lambda\)
\(D=P\left(e^{\lambda t}-1\right)+D_{\text {initial }} \quad\left[\right.\) approximates to:] \(D=P * \lambda t+D_{\text {initial }}\)
\({ }^{87} \mathrm{Sr}={ }^{87} \mathrm{Rb}\) * \(\left(\mathrm{e}^{\lambda \mathrm{t}}-1\right)+{ }^{87}\) Sr rinitial
\(\delta y / \delta x=\lambda t\)
\(\delta_{\text {sample }}=\left(\left(R_{\text {sample }}-R_{\text {standard }}\right) / R_{\text {sample }}\right) * 1000\)
\(\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)=\mathrm{T}(\mathrm{K})-273\)
\(\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right]\)
```


