BIRKBECK COLLEGE

(University of London)

BSc EXAMINATION

SCHOOL OF SCIENCE
DEPARTMENT OF EARTH AND PLANETARY SCIENCES
INTRODUCTION TO GEOCHEMISTRY

EASC038H4
15 CREDITS
Thursday 19 May 2016

14:30-16:30

INSTRUCTIONS

Answer THREE questions. [Candidates are advised to spend FORTY minutes on each question. Use diagrams and chemical reactions to support written answers wherever possible]

ALL QUESTIONS CARRY EQUAL MARKS
[Candidates will be provided with a Periodic Table of the Elements and an Equation bank]

1. Describe the structure of the atom, including in your answer information on the nucleus, protons, neutrons, electrons, quantum numbers, shells and subshells.
2. Explain how the carbon-carbon bonding differs between graphite and diamond. Use these differences in bonding to explain why (i) diamond is hard and graphite is soft and (ii) diamond is an insulator and graphite is a conductor.
3. Write down the Condensed Phase Rule and explain what is meant by the terms 'component', 'phase' and 'number of degrees of freedom'. Draw a sketch of the fayalite-forsterite T-X diagram and use it to explain how a liquid with an initial composition of 60% forsterite and 40% fayalite changes as it cools from $1900^{\circ} \mathrm{C}$ to $1200^{\circ} \mathrm{C}$.
4. Describe how oxygen and hydrogen isotope fractionation occurs in the hydrosphere. Explain, using diagrams, how oxygen and hydrogen isotopes vary with latitude.
5. (a) Using examples and equations, define the terms:

- solution;
- acid;
- pH ;
- ionic strength.
(b) Sketch an Eh-pH diagram for natural environments and use it to show the lower and upper limits of water stability and the stability fields for the solid and dissolved species of iron.

6. Describe the chemical weathering processes of dissolution, hydrolysis, oxidation and reduction.

Equation Bank

$$
\begin{aligned}
& \Delta \mathrm{H}=\mathrm{H}_{\text {products }}-\mathrm{H}_{\text {reactants }} \\
& \mathrm{G}=\mathrm{H}-\mathrm{TS} \\
& \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{~S} \\
& \mathrm{k}=\mathrm{A} \mathrm{e}^{-\mathrm{Ea} / \mathrm{RT}} \\
& \varphi+\mathrm{F}=\mathrm{C}+2 \\
& \varphi+\mathrm{F}=\mathrm{C}+1 \\
& \mathrm{~J}_{\mathrm{i}}=-\mathrm{D}_{\mathrm{i}} \mathrm{dc} / \mathrm{dx} \\
& \mathrm{~N}=\mathrm{N}_{0} \mathrm{e}^{-\lambda \mathrm{t}} \\
& \delta \mathrm{P} / \delta \mathrm{T}=\Delta \mathrm{S} / \Delta \mathrm{V} \\
& \delta \mathrm{c}_{\text {product }} / \delta \mathrm{T}=\delta \mathrm{c}_{\text {reactant }} / \delta \mathrm{T} \\
& J_{i}=-D_{i} \delta c_{i} / \delta x \\
& K=[C]^{c}[D]^{d}[E]^{e} /[A]^{a}[B]^{b} \\
& \mathrm{I}=1 / 2 \Sigma \mathrm{~m}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}^{2} \\
& D=P\left(e^{\lambda t}-1\right)+D_{0} \\
& \mathrm{t} / 1 / 2=\ln 2 / \lambda \\
& { }^{87} \mathrm{Sr}={ }^{87} \mathrm{Rb} \text { * }\left(\mathrm{e}^{\lambda \mathrm{t}}-1\right)+{ }^{87} \mathrm{Sr}_{0} \\
& { }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}={ }^{87} \mathrm{Rb} /{ }^{86} \mathrm{Sr} * \lambda \mathrm{t}+{ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}_{0} \\
& \delta y / \delta x=\lambda t \\
& \delta_{\text {sample }}=\left(R_{\text {sample }}-R_{\text {standard }} / R_{\text {sample }}\right){ }^{*} 1000
\end{aligned}
$$

