3.2.S.1.2. STRUCTURE

BNT162b2 drug substance is a single-stranded, 5^{\prime}-capped mRNA that is translated into a protein (the encoded antigen). Figure 3.2.S.1.2-1 illustrates the general structure of the antigen-encoding RNA, which is determined by the respective nucleotide sequence of the DNA used as template for in vitro RNA transcription. In addition to the codon-optimized sequence encoding the antigen, the RNA contains common structural elements optimized for mediating high RNA stability and translational efficiency (5^{\prime}-cap, 5^{\prime}-UTR, 3^{\prime}-UTR, poly(A) tail; see below). Furthermore, an intrinsic signal peptide (sec) is part of the open reading frame and is translated as an N-terminal peptide. The RNA does not contain any uridines; instead of uridine the modified N1-methylpseudouridine is used in RNA synthesis.

Figure 3.2.S.1.2-1. General structure of the RNA

Schematic illustration of the general structure of the BNT162b2 drug substance with 5'-cap, 5'- and 3'-untranslated regions (hAg-Kozak and FI element, respectively), coding sequence with mutations and intrinsic signal peptide (sec) as well as poly(A)-tail (A30L70). Individual elements are not drawn to scale compared to their respective sequence lengths.

mRNA cap

A cap1 structure $\mathrm{m}_{2}{ }^{7,3^{3}-\mathrm{O}} \operatorname{Gppp}\left(\mathrm{m}_{1}{ }^{2^{2}-\mathrm{O}}\right) \mathrm{ApG}$ Figure 3.2.S.1.2-2 is utilized as specific capping structure at the 5^{\prime}-end of the RNA drug substance (Figure 3.2.S.1.2-2).

Figure 3.2.S.1.2-2. $\quad 5^{\prime}$-cap analog $\left(\mathrm{m}_{2}{ }^{7,3^{3}-\mathrm{O}} \mathbf{G p p p}\left(\mathrm{m}_{1}{ }^{2}-\mathrm{O}\right) \mathrm{ApG}\right)$ for production of RNA containing a cap1 structure

The cap1 structure (i.e., containing a 2'-O-methyl group on the penultimate nucleoside of the 5^{\prime}-end of the RNA chain) is incorporated into the BNT162b2 drug substance by using a respective cap analog during in vitro transcription. For RNAs with modified uridine nucleotides, the cap1 structure is superior to other cap structures, since cap1 is not recognized by cellular factors such as IFIT1 ${ }^{1}$ and, thus, cap1-dependent translation is not inhibited by competition with eukaryotic translation initiation factor $4 \mathrm{E}^{2}$. In the context of IFIT1 expression, mRNAs with a cap 1 structure give higher protein expression.

In addition, use of the cap 1 structure leads to low amounts of uncapped transcripts ${ }^{3}$. In general, the T7 Polymerase prefers a guanosine as priming nucleoside with the highest transcription efficiencies as compared to other starting nucleosides ${ }^{4}$. Capping structures with a guanosine moiety compete with GTP for incorporation in the mRNA resulting in uncapped transcripts. The $\mathrm{m}_{2}{ }^{7,3^{\prime}-\mathrm{O}} \mathrm{Gppp}\left(\mathrm{m}_{1}{ }^{{ }^{\prime}-\mathrm{O}}\right) \mathrm{ApG}$ cap analog rescues transcription efficiency from

[^0]templates starting with adenosines, because the ApG moiety of cap1 allows transcription initiation at the second position, a guanosine, thereby giving mainly capped mRNAs.

Modified Uridine

The RNA does not contain any uridines; instead of uridine the modified
N1-methylpseudouridine is used in RNA synthesis. Several reports have demonstrated that such a substitution often strongly enhances translation of in vitro transcribed mRNA sequences by reducing its immunogenicity ${ }^{5,6,7}$. Accordingly, the BNT162b2 drug substance is synthesized in the presence of N1-methylpseudouridine triphosphate (${ }^{\mathrm{ml}} \Psi T P$) instead of uridine triphosphate (UTP).

RNA sequence

The general sequence elements of the BNT162b2 drug substance, as depicted in Figure 3.2.S.1.2-1, are given below. The full sequence is given in Figure 3.2.S.1.2-3.

The vaccine is based on the spike glycoprotein (S) of the SARS-CoV-2 virus. The sequence was chosen based on the sequence for the "Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1", which was available when the program was initiated:

- GenBank: MN908947.3 (complete genome)
- GenBank: QHD43416.1 (spike surface glycoprotein)
hAg-Kozak (nucleotides 2 to 54): 5'-UTR sequence of the human alpha-globin mRNA with an optimized 'Kozak sequence' to increase translational efficiency ${ }^{8}$.

Sec (nucleotides 55 to 102): Sec corresponds to the intrinsic S1S2 protein signal peptide (sec), which guides translocation of the nascent polypeptide chain into the endoplasmic reticulum.

S1S2 protein (nucleotides 103 to 3879): Codon-optimized sequence encoding the spike antigen of SARS-CoV-2. The S1S2 protein or spike glycoprotein is expressed on

[^1]membranes. It facilitates recognition by the host cells as well as cellular uptake. The protein sequence contains two proline mutation (K986P and V987P), which ensures an antigenically optimal pre-fusion confirmation (P2 S).

FI element (nucleotides 3880 to 4174): The $3^{\prime}-U T R$ is a combination of two sequence elements derived from the "amino terminal enhancer of split" (AES) mRNA (called F) and the mitochondrial encoded 12 S ribosomal RNA (called I). These were identified by an ex vivo selection process for sequences that confer RNA stability and augment total protein expression ${ }^{9}$.

A30L70 (nucleotides 4175 to 4284): A poly(A)-tail measuring 110 nucleotides in length, consisting of a stretch of 30 adenosine residues, followed by a 10 nucleotide linker sequence and another 70 adenosine residues designed to enhance RNA stability and translational efficiency in dendritic cells ${ }^{10}$.

Figure 3.2.S.1.2-3. RNA nucleotide Sequence of the BNT162b2 drug substance:

```
Nucleotide sequence 5'->3':
GAGAAYAAAC YAGYAYYCYY CYGGYCCCCA CAGACYCAGA GAGAACCCGC 50
CACCAYGYYC GYGYYCCYGG YGCYGCYGCC YCYGGYGYCC AGCCAGYGYG 100
YGAACCYGAC CACCAGAACA CAGCYGCCYC CAGCCYACAC CAACAGCYYY 150
ACCAGAGGCG YGYACYACCC CGACAAGGYG YYCAGAYCCA GCGYGCYGCA 200
CYCYACCCAG GACCYGYYCC YGCCYYYCYY CAGCAACGYG ACCYGGYYCC 250
ACGCCAYCCA CGYGYCCGGC ACCAAYGGCA CCAAGAGAYY CGACAACCCC 300
GYGCYGCCCY YCAACGACGG GGYGYACYYY GCCAGCACCG AGAAGYCCAA 350
CAYCAYCAGA GGCYGGAYCY YCGGCACCAC ACYGGACAGC AAGACCCAGA 400
GCCYGCYGAY CGYGAACAAC GCCACCAACG YGGYCAYCAA AGYGYGCGAG 450
YYCCAGYYCY GCAACGACCC CYYCCYGGGC GYCYACYACC ACAAGAACAA 500
CAAGAGCYGG AYGGAAAGCG AGYYCCGGGY GYACAGCAGC GCCAACAACY 550
GCACCYYCGA GYACGYGYCC CAGCCYYYCC YGAYGGACCY GGAAGGCAAG 600
CAGGGCAACY YCAAGAACCY GCGCGAGYYC GYGYYYAAGA ACAYCGACGG }65
CYACYYCAAG AYCYACAGCA AGCACACCCC YAYCAACCYC GYGCGGGAYC 700
YGCCYCAGGG CYYCYCYGCY CYGGAACCCC YGGYGGAYCY GCCCAYCGGC 750
AYCAACAYCA CCCGGYYYCA GACACYGCYG GCCCYGCACA GAAGCYACCY 800
GACACCYGGC GAYAGCAGCA GCGGAYGGAC AGCYGGYGCC GCCGCYYACY 850
AYGYGGGCYA CCYGCAGCCY AGAACCYYCC YGCYGAAGYA CAACGAGAAC 900
GGCACCAYCA CCGACGCCGY GGAYYGYGCY CYGGAYCCYC YGAGCGAGAC 950
AAAGYGCACC CYGAAGYCCY YCACCGYGGA AAAGGGCAYC YACCAGACCA 1000
GCAACYYCCG GGYGCAGCCC ACCGAAYCCA YCGYGCGGYY CCCCAAYAYC 1050
ACCAAYCYGY GCCCCYYCGG CGAGGYGYYC AAYGCCACCA GAYYCGCCYC 1100
YGYGYACGCC YGGAACCGGA AGCGGAYCAG CAAYYGCGYG GCCGACYACY 1150
```

${ }^{9}$ Orlandini von Niessen AG, Poleganov MA, Rechner C, et al. Improving mRNA-Based Therapeutic Gene Delivery by Expression-Augmenting 3' UTRs Identified by Cellular Library Screening. 2019. Mol Ther;27(4):1-13.
${ }^{10}$ BioNTech Patent auf STABILISIERUNG VON DNA-SEQUENZEN ZUR POLY(A)SEQUENZCODIERUNG. Accessed at https://data.epo.org/publication-server/pdfdocument?pn=3167059\&ki=B1\&cc=EP\&pd=20190626

BNT162b2

3.2.S.1.2 Structure

CCGYGCYGYA CAACYCCGCC AGCYYCAGCA CCYYCAAGYG CYACGGCGYG 1200 YCCCCYACCA AGCYGAACGA CCYGYGCYYC ACAAACGYGY ACGCCGACAG 1250 CYYCGYGAYC CGGGGAGAYG AAGYGCGGCA GAYYGCCCCY GGACAGACAG 1300 GCAAGAYCGC CGACYACAAC YACAAGCYGC CCGACGACYY CACCGGCYGY 1350 GYGAYYGCCY GGAACAGCAA CAACCYGGAC YCCAAAGYCG GCGGCAACYA 1400 CAAYYACCYG YACCGGCYGY YCCGGAAGYC CAAYCYGAAG CCCYYCGAGC 1450 GGGACAYCYC CACCGAGAYC YAYCAGGCCG GCAGCACCCC YYGYAACGGC 1500 GYGGAAGGCY YCAACYGCYA CYYCCCACYG CAGYCCYACG GCYYYCAGCC 1550 CACAAAYGGC GYGGGCYAYC AGCCCYACAG AGYGGYGGYG CYGAGCYYCG 1600 AACYGCYGCA YGCCCCYGCC ACAGYGYGCG GCCCYAAGAA AAGCACCAAY 1650 CYCGYGAAGA ACAAAYGCGY GAACYYCAAC YYCAACGGCC YGACCGGCAC 1700 CGGCGYGCYG ACAGAGAGCA ACAAGAAGYY CCYGCCAYYC CAGCAGYYYG 1750 GCCGGGAYAY CGCCGAYACC ACAGACGCCG YYAGAGAYCC CCAGACACYG 1800 GAAAYCCYGG ACAYCACCCC YYGCAGCYYC GGCGGAGYGY CYGYGAYCAC 1850 CCCYGGCACC AACACCAGCA AYCAGGYGGC AGYGCYGYAC CAGGACGYGA 1900 ACYGYACCGA AGYGCCCGYG GCCAYYCACG CCGAYCAGCY GACACCYACA 1950 YGGCGGGYGY ACYCCACCGG CAGCAAYGYG YYYCAGACCA GAGCCGGCYG 2000 YCYGAYCGGA GCCGAGCACG YGAACAAYAG CYACGAGYGC GACAYCCCCA 2050 YCGGCGCYGG AAYCYGCGCC AGCYACCAGA CACAGACAAA CAGCCCYCGG 2100 AGAGCCAGAA GCGYGGCCAG CCAGAGCAYC AYYGCCYACA CAAYGYCYCY 2150 GGGCGCCGAG AACAGCGYGG CCYACYCCAA CAACYCYAYC GCYAYCCCCA 2200 CCAACYYCAC CAYCAGCGYG ACCACAGAGA YCCYGCCYGY GYCCAYGACC 2250 AAGACCAGCG YGGACYGCAC CAYGYACAYC YGCGGCGAYY CCACCGAGYG 2300 CYCCAACCYG CYGCYGCAGY ACGGCAGCYY CYGCACCCAG CYGAAYAGAG 2350 CCCYGACAGG GAYCGCCGYG GAACAGGACA AGAACACCCA AGAGGYGYYC 2400 GCCCAAGYGA AGCAGAYCYA CAAGACCCCY CCYAYCAAGG ACYYCGGCGG 2450 CYYCAAYYYC AGCCAGAYYC YGCCCGAYCC YAGCAAGCCC AGCAAGCGGA 2500 GCYYCAYCGA GGACCYGCYG YYCAACAAAG YGACACYGGC CGACGCCGGC 2550 YYCAYCAAGC AGYAYGGCGA YYGYCYGGGC GACAYYGCCG CCAGGGAYCY 2600 GAYYYGCGCC CAGAAGYYYA ACGGACYGAC AGYGCYGCCY CCYCYGCYGA 2650 CCGAYGAGAY GAYCGCCCAG YACACAYCYG CCCYGCYGGC CGGCACAAYC 2700 ACAAGCGGCY GGACAYYYGG AGCAGGCGCC GCYCYGCAGA YCCCCYYYGC 2750 YAYGCAGAYG GCCYACCGGY YCAACGGCAY CGGAGYGACC CAGAAYGYGC 2800 YGYACGAGAA CCAGAAGCYG AYCGCCAACC AGYYCAACAG CGCCAYCGGC 2850 AAGAYCCAGG ACAGCCYGAG CAGCACAGCA AGCGCCCYGG GAAAGCYGCA 2900 GGACGYGGYC AACCAGAAYG CCCAGGCACY GAACACCCYG GYCAAGCAGC 2950 YGYCCYCCAA CYYCGGCGCC AYCAGCYCYG YGCYGAACGA YAYCCYGAGC 3000 AGACYGGACC CYCCYGAGGC CGAGGYGCAG AYCGACAGAC YGAYCACAGG 3050 CAGACYGCAG AGCCYCCAGA CAYACGYGAC CCAGCAGCYG AYCAGAGCCG 3100 CCGAGAYYAG AGCCYCYGCC AAYCYGGCCG CCACCAAGAY GYCYGAGYGY 3150 GYGCYGGGCC AGAGCAAGAG AGYGGACYYY YGCGGCAAGG GCYACCACCY 3200 GAYGAGCYYC CCYCAGYCYG CCCCYCACGG CGYGGYGYYY CYGCACGYGA 3250 CAYAYGYGCC CGCYCAAGAG AAGAAYYYCA CCACCGCYCC AGCCAYCYGC 3300 CACGACGGCA AAGCCCACYY YCCYAGAGAA GGCGYGYYCG YGYCCAACGG 3350 CACCCAYYGG YYCGYGACAC AGCGGAACYY CYACGAGCCC CAGAYCAYCA 3400 CCACCGACAA CACCYYCGYG YCYGGCAACY GCGACGYCGY GAYCGGCAYY 3450 GYGAACAAYA CCGYGYACGA CCCYCYGCAG CCCGAGCYGG ACAGCYYCAA 3500 AGAGGAACYG GACAAGYACY YYAAGAACCA CACAAGCCCC GACGYGGACC 3550 YGGGCGAYAY CAGCGGAAYC AAYGCCAGCG YCGYGAACAY CCAGAAAGAG 3600 AYCGACCGGC YGAACGAGGY GGCCAAGAAY CYGAACGAGA GCCYGAYCGA 3650 CCYGCAAGAA CYGGGGAAGY ACGAGCAGYA CAYCAAGYGG CCCYGGYACA 3700 YCYGGCYGGG CYYYAYCGCC GGACYGAYYG CCAYCGYGAY GGYCACAAYC 3750 AYGCYGYGYY GCAYGACCAG CYGCYGYAGC YGCCYGAAGG GCYGYYGYAG 3800 CYGYGGCAGC YGCYGCAAGY YCGACGAGGA CGAYYCYGAG CCCGYGCYGA 3850 AGGGCGYGAA ACYGCACYAC ACAYGAYGAC YCGAGCYGGY ACYGCAYGCA 3900 CGCAAYGCYA GCYGCCCCYY YCCCGYCCYG GGYACCCCGA GYCYCCCCCG 3950 ACCYCGGGYC CCAGGYAYGC YCCCACCYCC ACCYGCCCCA CYCACCACCY 4000

```
CYGCYAGYYC CAGACACCYC CCAAGCACGC AGCAAYGCAG CYCAAAACGC 4050
YYAGCCYAGC CACACCCCCA CGGGAAACAG CAGYGAYYAA CCYYYAGCAA 4100
YAAACGAAAG YYYAACYAAG CYAYACYAAC CCCAGGGYYG GYCAAYYYCG 4150
YGCCAGCCAC ACCCYGGAGC YAGCAAAAAA AAAAAAAAAA AAAAAAAAAA 4200
AAAAGCAYAY GACYAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA }425
AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAA 4284
```

Sequence length: 4284, which includes G to denote the presence of the 5 '-cap analog G: 1062 C: 1315 A: 1106 Y: 801
$\mathrm{A}=$ Adenine; $\mathrm{C}=$ Cytosine; $\mathrm{G}=$ Guanine; $\mathrm{Y}=\mathrm{N} 1$-methylpseudouridine

[^0]: ${ }^{1}$ Habjan M, Hubel P, Lacerda L, et al. Sequestration by IFIT1 Impairs Translation of 2'O-unmethylated Capped RNA. 2013. PLOS Pathog;9(10):e1003663
 ${ }^{2}$ Diamond MS. IFIT1: A dual sensor and effector molecule that detects non-2'-O methylated viral RNA and inhibits its translation. 2014. Cytokine Growth Factor Rev;25(5):543-50.
 ${ }^{3}$ Trilink Patent auf CC413 cap. Accessed at https://patentimages.storage.googleapis.com/4c/83/15/99418d175a3be2/WO2017053297A1.pdf
 ${ }^{4}$ Kuzmine I, Gottlieb PA, Martin CT. Binding of the priming nucleotide in the initiation of transcription by T7 RNA polymerase. 2003. J Biol Chem;278(5):2819-23.

[^1]: ${ }^{5}$ Kariko K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. 2008. Mol Ther; 16(11):1833-40.
 ${ }^{6}$ Andries O, Mc Cafferty S, De Smedt SC, et al. N(1)-methylpseudouridine-incorporated mRNA outperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. 2015. J Control Release; 217:337-44.
 ${ }^{7}$ Richner JM, Himansu S, Dowd KA, et al. Modified mRNA Vaccines Protect against Zika Virus Infection. 2017. Cell;168(6):1114-25.e10
 ${ }^{8}$ Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. 1987. Nucleic Acids Res;15(20):8125-48.

