Mathematics

in school inspection

January 2013

Information Pack for Training

This pack contains the information you will need to refer to during the activities.

Abstract

Numbers Children count reliably with numbers from 1 to 20, place them in order and say which number is one more or one less than a given number.

Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Shape, space and measures

Children use everyday language to talk about size, weight, capacity, position, distance, time and money to compare quantities and objects and to solve problems.

They recognise, create and describe patterns.
They explore characteristics of everyday objects and shapes and use mathematical language to describe them.

These new expectations are higher than previously:

- working with numbers 1-20 rather than 1-10 (note difficulty of language for 11-19, particularly for the 'teens')
- doubling, halving and sharing
- addition and subtraction more developed than previously, though linked to practical activities
- mathematical language to describe 'characteristics' of objects and shapes
- problem solving in both ELGs rather than as a statement which children attaining 6+ points may not have been taught or have attained

Former Early Learning Goals for problem solving, reasoning and numeracy

(Points 4 to 8 represent working within the ELGs but are not hierarchical. Children who achieve any six points or more in each scale are said to be 'working securely within the ELGs', but may not have met point 8 . Point 9 represents working beyond the ELGs.)

Scale point	Numbers as labels and for counting	Calculating	Shape, space and measures
4	Says number names in order	Relates addition by combining two groups	Talks about, recognises and recreates simple patterns
5	Recognises numerals 1 to 9	Relates subtraction to taking away	Uses everyday words to describe position
6	Counts reliably up to 10 everyday objects	In practical activities and discussion, begins to use the vocabulary involved in adding and subtracting	Uses language such as 'circle' or 'bigger' to describe the shape and size of solids and flat shapes
7	Orders numbers up to 10	Finds one more or one less than a number from 1 to 10	Uses language such as 'greater', 'smaller', 'heavier' or 'lighter' to compare quantities
8	Uses developing mathematical ideas and methods to solve practical problems	Uses developing mathematical ideas and methods to solve practical problems	Uses developing mathematical ideas and methods to solve practical problems
9	Recognises, counts, orders, writes and uses numbers up to 20	Uses a range of strategies for addition and subtraction, including some mental recall of number bonds	Uses mathematical language to describe solid (3D) objects and flat (2D) shapes

National data on the Foundation Stage Profile

Percentages at 6+ and at 9 points in each scale and all three scales combined since 2010

	$2010 \% 6+$	$2011 \% 6+$	$2012 \% 6+$	$2012 \% 9$ points
NLC	89	90	91	17
C	76	78	80	7
SSM	84	85	86	7
all three scales	72	74	77	n/a

The three prime areas and four specific areas

	Prime Areas	Personal, Social and Emotional Development	Physical Development	Communication and Language
Specific areas		- Making relationships - Self-confidence and self-awareness - Managing feelings and behaviour	- Moving and handling - Health and self-care	- Listening and attention - Understanding - Speaking
Literacy	- Reading - Writing			
Mathematics	- Numbers - Shape, space and measures	Children are confident to try new activities ... will talk about their ideas, and will choose the resources they need for their chosen activities. They say when they do or don't need help. (PSED ELG)		Children ... answer 'how' and 'why' questions about their experiences. Children express themselves effectively ... develop their own ... explanations by connecting ideas and events. (CL ELG)
Understanding the World	- People and communities - The world - Technology			
Expressive Arts and Design	- Exploring and using media and materials - Being imaginative			

Characteristics of Effective learning	
Playing and exploring engagement	Finding out and exploring
	Playing with what they know
	Being willing to 'have a go'
Active learning - motivation	Being involved and concentrating
	Keeping trying
	Enjoying achieving what they set out to do
Creating and thinking critically - thinking	Having their own ideas - Thinking of ideas - Finding ways to solve problems - Finding new ways to do things
	Making links - Making links and noticing patterns in their experience - Making predictions - Testing their ideas - Developing ideas of grouping, sequences, cause and effect
	Choosing ways to do things - Planning, making decisions about how to approach a task, solve a problem and reach a goal - Checking how well their activities are going - Changing strategy as needed - Reviewing how well the approach worked

Video of numbers to 20 on a washing line

While watching the video, record your notes below. Give specific mathematical detail. What mathematics do the children use in doing this activity?

How well was the activity set up to encourage understanding and problem solving?

Judge both children against the ELG for numbers.

What inspection activities would you do next to follow up this observation?

| Wheate and describe patterns |
| :--- | :--- |
| She enjoyed using the computer to create her own |
| symmetrical pattern after secing some Rangoli |
| patterns. She used the pointer to select colours and |
| draw on the smartboard. She said 'look at my |
| pattern' when she had finished. |
| Possible questions |
| I Tell me how your pattern works. |
| I What would come next in your pattern? |

Numbers of vehicles

A girl has lined up vehicles like this:

It indicates she has done some sorting and possibly some counting. Individually:

- Jot down some questions you might ask this girl to check her knowledge and understanding of number.

Comparative language video

You are going to see a short video of a teaching assistant asking a child to compare heights of family members she has drawn.

While watching the video:

- Note down the specific mathematical language used
- Think about the questions the TA asks, particularly how she checks the child's responses.

Shapes activity

In a creative activity led by a teaching assistant, children had a pack of gummed shapes (squares, circles, triangles and rectangles) in two sizes and four colours (red, blue, yellow and green). They made pictures by sticking them on large sheets of paper.
These are two children's pictures.

The TA asked, 'What is your picture?', 'What colours did you use?' Look back at the shape Early Learning Goal on page 2.

With your partner decide on good

- questions on shape to stimulate mathematical discussion
- support for additional adults to generate such discussion. You might want to annotate the pictures with your questions.

Case study of two pupils

Joe and Jade had similar Level 5 Key Stage 2 results in English and mathematics.
Make a note of the positive and negative factors which affected their progression in mathematics.

Resources to help build concepts

What is the name of each of these diagrams and pieces of equipment?

Equivalent fraction diagrams

Create a different type of diagram to convince your partner why $3 / 7$ and $6 / 14$ are equivalent.

Fraction diagrams

A Year 6 boy was asked 'Are $2 / 5$ and $3 / 7$ equivalent?'
He drew these two diagrams and stated that the fractions were equivalent.

What would you ask this boy, to find out how much he understood?

Errors and misconceptions

Several errors are illustrated below. They are caused by:

- underlying misconceptions
- unhelpful rules
- lack of precision with the order of language and symbols.

With your partner, see if you can identify the underlying misconception or cause of each error.

206 in words is twenty six	In order, smallest fürst: $\begin{array}{lllll} 3.2 & 3.6 & 3.15 & 3.82 & 3.140 \end{array}$
Take 6 away from 11 $6-11=5$	$\begin{aligned} & 10 \% \text { of } 70=70 \div 10=7 \\ & 20 \% \text { of } 60=60 \div 20=3 \end{aligned}$
$2.7 \times 10=2.70$	$\begin{aligned} & -2 x^{-} 8={ }^{+} 16 \\ & -1+-4={ }^{+} 5 \end{aligned}$

LO: simplify linear expressions by collecting like terms

Examples:
(1) $5 a+3 a+a=9 a$

B
(2)

$$
\begin{aligned}
& 2 a+3 b+4 a+5 b \\
= & 2 a+4 a+3 b+5 b=6 a+8 b
\end{aligned}
$$

$$
\begin{aligned}
& \text { (3) } 7 x+4 y-3 x-2 y \\
& =7 x-3 x+4 y-2 y=4 x+2 y
\end{aligned}
$$

Exercise $5 b$ p 47

1. $2 a+4 a+12 a=18 a$
2. $\quad 2 p+3 q+5 q=2 p+8 q$
3. $5 s+3 t+4 s+t=9 s+4 t \quad \downarrow J$
4. $12 e+4 f+3 e+3 f=15 e+7 f$
5. $h g+2 h+h+g=5 g+3 h$
6. $a+3 a+3 b+4 b=4 a+7 b v$
7. $d+3 c+3 d+2 c=4 d+5 c$
8. $3 j-4 k+2 j+k=j+5 k x$
9. $2 u-3 u-4 u=$

Very nat work and only I wrong
Well done. Next steps : equations

Green highlight shows pupil's response to initial marking, later checked by teacher

L0: collecting like terms

1. $a+2 b+2 a+3 b=3 a+5 b=8 a b$
$23 a+2 b+2 a+4 b=5 a+6 b=11 a b$
$3 \cdot a+2 b+a+3 b+4 a=6 a+5 b \rho=16 a b$
$43 a+3 b+c+2 b+5 c$

2. $3 a+6 b+4 c+3 a+2 b+6 c$

3. $4 a+3 b-a+2 b=3 a+1 b^{x}=4 a b$
4. $6 a+5 b-3 a+3 b=3 a+2 b^{x}=5 a b$
5. $4 a+2 b-3 a+4 b=1 a-2 b \cong$

I think you've got the idea when you add but need to stop there. Remember-you can't add apples and bananas.

Collecting liketerms Level 5 $5^{170 \text { cor } 2012} \quad$ D

$=+3 a+2 a+2 b-3 b$

$$
=5 a-b
$$

1. $2 x+-3 y+5 x+-2 y$

$$
=+2 x+5 x-3 y-2 y
$$

2. $5 x+3 y-2 x-y$

$$
=5 x-2 x+3 y-y=3 x+2 y
$$

3. $45-3 t+25+2 t$

$$
=4 s+2 s-3 t+2 t=6 s-5 t
$$

$4 p+12 q-3 p-7 q$

$$
\begin{aligned}
& +12 q-3 p-7 q q \\
& =p-3 p+12 q-7 q=-2 p+5 q
\end{aligned}
$$

5. $-2 k-3 l+4 l-3 k$

$$
=-2 k-3 k_{1}-3 l+4 l=5 k+l^{x}
$$

6. $3 u+4-2 u+6=$?

Not enough work for 20 m ins
First tow ok but check minuses

Puzzles

Total cost £21

£5

ELLE

ANNA
ANNA
ALLY

- Look at the worksheet on Pythagoras' Theorem.
- With your partner, consider its potential for developing pupils' problem solving skills and understanding.
- With what quality of teaching and learning might it be consistent?
- Identify the points for development about the worksheet you would feed back to the teacher.

Pythagoras' Theorem - worksheet

a

$$
a^{2}+b^{2}=c^{2}
$$

In each question, use the values of a and b given to work out c.

1. $a=6 \mathrm{~cm}, b=8 \mathrm{~cm}$
2. $a=5 \mathrm{~cm}, \mathrm{~b}=12 \mathrm{~cm}$
3. $a=12 m, b=9 m$
4. $a=8 \mathrm{~cm}, b=15 \mathrm{~cm}$
5. $a=4 \mathrm{~mm}, b=7 \mathrm{~mm}$
6. The diagram opposite shows a ladder leaning against a wall. The foot of the ladder is placed a distance of 1 m from the wall and the ladder reaches a distance of 5.5 m up the wall.

How long is the ladder?

6. $a=10 \mathrm{~cm}, \mathrm{~b}=3 \mathrm{~cm}$
7. $a=1.8 \mathrm{~cm}, b=8 \mathrm{~cm}$
8. $a=3.8 \mathrm{~cm}, b=7.2 \mathrm{~cm}$
9. $a=11.5 \mathrm{~m}, \mathrm{~b}=9.8 \mathrm{~m}$
10. $a=4.55 \mathrm{~km}, \mathrm{~b}=9.12 \mathrm{~km}$

12. The picture opposite shows the dimensions of a football pitch.

How long is the diagonal line from corner to corner?

Cuboids video

- You are going to see four extracts of strong teaching on 3D geometry starting with diagonals of cuboids. (An expert on ICT in mathematics education is observing the lesson.)
- You will be gathering evidence on how the teacher develops pupils':
- problem-solving skills
- conceptual understanding.
- Also record actions or words that demonstrate pupils' understanding or lack of it.
- Record descriptive detail that would be helpful later to inform evaluations and judgements, areas for development, and feedback to the teacher. No evaluation is needed at this stage.

This cuboid is used in the first two extracts.

Record mathematical details for each extract. You may wish to use the diagram.

Extract 1: What is the longest stick that would fit into this box?

Extract 2: Overcoming misconceptions and calculating the longest diagonal

Extract 3: Angle between the space diagonal AG and the base ABCD in a different cuboid

Extract 4: Problems: a) pyramid or b) whether general statements are always, sometimes or never true (e.g. 'the longer the diagonal, the smaller the angle between the diagonal and base')

Rectangle area

Teacher A

I start by telling pupils the formula $\mathrm{L} \times \mathrm{W}$. Then they work through some examples on their whiteboards. I check they can
identify the length and the width correctly. Finally, they work through a worksheet. The high-attaining pupils can tackle questions with larger numbers and decimals.

Teacher C

I ask the pupils to count squares inside the rectangles, looking at the rows and the columns. We start by counting, and then adding, for example $8+8+8$, and finally 3 lots of 8 or 8 lots of 3 . The pupils quickly see why the formula works, and how the same area is built up from rows or columns.

Teaching Assistant B

I try to find something that pupils can relate to from their own experience - a swimming pool is a good image because most pupils understand what 'a length of the pool' means. They then recognise the 'length' as the longest side.

Teacher D

I ask the pupils to measure or count along the sides of the rectangles and count the number of squares inside - although sometimes they make mistakes! They put their results in a table and I get them to figure out a connection for themselves.

Teacher E

I use tiles to make a rectangle with 15 tiles. We look at it in different orientations. I ask them to describe each one in different ways and explain whether they have the same area.

Then I give each pair 12 tiles and ask them to make a rectangle. I ask if they think they could make another rectangle with 12 tiles, making sure they predict its size before they make it. It's important to ask them to check they've found them all and explain why. Then I give them other numbers of tiles to investigate.

Polygons video

In this lesson, a teacher diagnoses Y11 pupils' understanding of polygons. She asks them to use their own criteria to sort shapes drawn on cards.

This teacher particularly effectively:

- encourages pupils to think, keep trying and gain confidence
- listens precisely to what pupils say
- responds to pupils' answers and questions
- finds out what pupils understand and their misconceptions.

The three extracts are very short with a small gap between them for writing. The table below has a cell for each of the four strengths above. For each extract, write in the cells for which you see evidence.

Record evidence of what the teacher does and its impact. Concentrate on the interaction between teacher and pupils. Use enough detail to support evaluation of the four strengths.

Information about extracts

Extract 1

Circle and ellipse

Extract 2

The teacher points to a rhombus, and asks, 'Is that regular?'

Extract 3

The teacher asks, 'Is that a polygon?' about these two shapes.

For each extract, record evidence in the relevant cells below encourages pupils to think, keep trying and gain confidence
listens precisely to what pupils say
responds to pupils' answers and questions
finds out what pupils understand and their misconceptions

